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Introduction1

(This foreword is not a part of IEEE Draft Std P1275.1/D14a, Standard for Boot (Initialization Configuration) Firmware,2
Supplement for IEEE 1754 ISA)3

Firmware is the ROM-based software that controls a computer between the time it is turned on and the time the4
primary operating system takes control of the machine. Firmware’s responsibilities include testing and initializing5
the hardware, determining the hardware configuration, loading (or booting) the operating system, and providing6
interactive debugging facilities in case of faulty hardware or software.7

Open Firmware is the firmware architecture defined by IEEE Std 1275-1994, Standard for Boot (Initialization8
Configuration) Firmware, Core Requirements and Practices. That standard is bus-independent, instruction-set-9
independent, and system-independent.10

The core requirements and practices specified by IEEE Std 1275-1994 must be supplemented by system-specific11
requirements to form a complete specification for the firmware for a particular system. This standard establishes12
such additional requirements pertaining to the instruction set architecture defined by IEEE Std 1754-1994, Open13
Microprocessor Standard.14
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1. Overview1

This standard specifies the application of IEEE Std 1275-1994, Standard for Boot (Initialization2
Configuration) Firmware, Core Requirements and Practices to computer systems that use the instruction3
set architecture (ISA) defined by IEEE Std 1754-1994, A 32-bit Microprocessor Architecture, including4
instruction-set-specific requirements and practices for debugging, client program interface, and data5
formats. These requirements are imposed upon firmware compliant with IEEE Std 1275-1994 when such6
firmware is used on a computer system that uses the above ISA. The requirements are not imposed on the7
ISA itself.8

2. References9

This standard shall be used in conjunction with the following publications. When the following standards10
are superceded by an approved revision, the revision shall apply.11

[1]  IEEE Std 1275-1994, Standard for Boot (Initialization Configuration) Firmware, Core Requirements12
and Practices13

[2]  IEEE Std 1754-1994, A 32-bit Microprocessor Architecture14

NOTE—Where the notation style differs between IEEE Std 1275-1994 and IEEE Std 1754-1994, the notation of this document15
follows that of IEEE Std 1275-1994.16

3. Terms17

This standard uses technical terms as they are defined in the documents cited in “References,” plus the following18
terms:19

3.1 core specification. Synonym for IEEE Std 1275-1994, Standard for Boot (Initialization Configuration)20
Firmware, Core Requirements and Practices, i.e., the standard that specifies the system-independent and bus-21
independent requirements for Open Firmware.22

3.2 Open Firmware. The firmware architecture defined by IEEE Std 1275-1994 and its applicable supplements or,23
when used as an adjective, a software component compliant with such an architecture.24

4. Data formats and representations25

The cell size shall be 32-bits. Number ranges for n, u, and other cell-sized items, are consistent with 32-26
bit two’s-complement number representation.27

The required alignment for items accessed with a-addr addresses shall be two-byte alignment (i.e. any28
even address is an acceptable a-addr). (This ISA requires four-byte alignment at the hardware level.29
However, the Forth implementation can hide this restriction; doing so can result in worthwhile reductions30
in ROM size in some cases.) An implementation may allow one-byte alignment of a-addr addresses, but31
shall not require alignment more strict than two-byte.32

Each operation involving a qaddr address shall be performed with a single 32-bit access to the addressed33
location; similarly, each waddr access shall be performed with a single 16-bit access. (This, in conjunction34
with the alignment requirements imposed by the instruction set architecture, implies four-byte alignment35
of qaddrs and two-byte alignment of waddrs.)36

5. Client interface requirements37

An Open Firmware client interface implementation for an IEEE 1754-compliant processor shall behave as38
described below.39
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5.1. Client program loading1

5.1.1. Default load address2

The default load address is the virtual address 0x4000. At least 0x80000 bytes of memory shall be available at that3
address. It is strongly recommended that as much memory as is practical for the particular system be available4
there, thus allowing the loading of large client programs.5

5.1.2. Client program header6

An Open Firmware implementation shall recognize the sequence of eight quadlets described below as a valid client7
program header (as used by the load User Interface command in the core specification) if the bf_magic  and8
bf_format  quadlets contain the specified values. If either quadlet does not contain the specified value, the9
behavior of the Open Firmware load command is implementation-dependent. The offsets given below are from10
the beginning of the loaded image. Each of the quadlets described below is in big-endian byte order.11

Offset Name Contents
0 bf_magic 0x0103.0107.

4 bf_text Size of the client program’s code.

8 bf_data Size of the client program’s initialized data.

12 bf_bss Size of the client program’s uninitialized data area.

16 bf_pad1 Undefined.

20 bf_origin Client program entry address.

24 bf_pad2 Undefined.

28 bf_format 0xffff.ffff.

The program image immediately follows the header. After recognizing this header, load allocates and12
maps bf_text  + bf_data  + bf_bss  bytes of memory beginning at the address given by13
bf_origin , moves the program image, of size bf_text  + bf_data , to that address, and zeroes14
bf_bss  bytes of memory beginning at bf_origin  + bf_text  + bf_data .15

NOTE—Some existing client programs use other values in bf_format . An Open Firmware implementation may implement16
compatibility modes to handle such client programs. The details of such compatibility modes are outside the scope of this17
standard.18

5.2. Initial program state19

This section defines the “initial program state,” the execution environment that exists when the first machine20
instruction of a client program of the format specified above begins execution. Many aspects of the “initial21
program state” are established by init-program, which sets the saved-program-state so that subsequent22
execution of go will begin execution of the client program with the specified environment.23
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5.2.1. Register values1

The CPU registers shall contain the following values:2

Register(s) Value

%psr S=1
ICC=0
EF=1 if floating point coprocessor present
EC=1 if second coprocessor present
EE=0
ET=1
PIL: implementation dependent value sufficiently low to allow the Open Firmware
timer interrupt to occur
CWP: 0

%wim 2

%tbr See 5.2.4.

%y 0

%i7 0

%o6, %i6 See 5.2.2.

%o1, %o2 See 5.2.3.

%o3 Address of client interface handler. See 5.3.

Other
registers

Other global (%g0-%g7), local (%l0-%l7), in (%i0-%i5), and out (%o0, %o4, %o5,
%o7) registers may be used for conveying information required by other client
interfaces that are outside the scope of this standard. Any registers that are not used
for such purposes shall contain zero.

NOTE—The stipulation that unused other registers contain zero makes it possible for a firmware system to support multiple3
different client interfaces simultaneously. For example, a firmware system might present both an Open Firmware client4
interface and also a different interface for compatibility with some existing client program. A client program can determine5
whether or not a particular client interface is present by testing for a nonzero value in one of the registers that that client6
interface uses. The presence of the Open Firmware client interface is denoted by a nonzero value in %o3. An earlier firmware7
system that was an ancestor of Open Firmware uses %o0 to pass the (nonzero) address of its client interface data structure to8
the client program.9

5.2.2. Initial stack10

When the first machine instruction of a client program begins execution, there shall be a valid stack and the11
processor state shall have the following characteristics:12

– %i6 shall contain zero.13

– %o6 shall contain an 8-byte-aligned address referring to a location within an area of memory that the Open14
Firmware implementation has allocated for use as the client program’s stack. That address shall be at least 9615
bytes below the top address of the stack memory area (providing space for saving the window registers of the16
current window), and at least 8000 bytes above the bottom address of stack memory area (providing room for17
stack growth).18

An Open Firmware implementation shall handle window overflow traps by saving the “local” and “in” registers of19
the window below the trap window to the address specified by the %o6 register of that window.20

An Open Firmware implementation shall handle window underflow traps by restoring the “local” and “in”21
registers of the window above the trap window from the address specified by the %o6 register of that window.22
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5.2.3. Client program arguments1

Registers %o1 and %o2 may be used to pass to the client program an array of bytes of arbitrary content, with %o12
containing the base address of the array and %o2 the length. If no such array is passed, %o1 and %o2 shall contain3
zero.4

NOTE—The Open Firmware standard makes no provision for specifying such an array or its contents. Therefore, in the5
absence of implementation-dependent extensions, a client program executed directly from an Open Firmware implementation6
will not be passed such an array. However, intermediate boot programs that simulate or propagate the Open Firmware client7
interface to the programs that they load can provide such an array for their clients.8

NOTE—Boot command line arguments, typically consisting of the name of a file to be loaded by a secondary boot program9
followed by flags selecting various secondary boot and operating system options, are provided to client programs via the10
“bootargs” and “bootpath” properties of the “/chosen” node.11

5.2.4. Trap table12

In this subclause, save-state-and-interact means to save the CPU state to the extent possible, display (if possible) a13
message indicating that the trap occurred, and return control to the Open Firmware user interface if it is present.14

%tbr shall refer to a trap table which handles traps as described in this subclause.15

Open Firmware trap table entries shall not contain PC-relative branch offsets, in order that client programs can16
copy trap table entries without modifying them.17

Hardware Trap # Name Behavior

5 Window Overflow See 5.2.2.

6 Window Underflow See 5.2.2.

0x11-0x1f Interrupt Vectors An Open Firmware implementation may use
certain interrupt vectors for internal functions, for
example managing the timer used to implement
the ALARM mechanism. Vectors that are not
used for such purposes shall save-state-and-
interact.

0xff Software trap 127 This trap vector is used for Open Firmware
breakpoints. The Open Firmware handler for this
trap vector shall save-state-and-interact.

A client program that installs its own trap table but wishes to continue using Open Firmware services should18
preserve the Open Firmware trap table entries for any traps that the client program does not explicitly need to19
handle. A good technique for doing this is to copy the contents of the Open Firmware trap table into the client20
program’s trap table, and then to replace only those entries to be serviced directly by the client program.21

A client program shall not alter entries within the Open Firmware trap table.22

When an Open Firmware command interpreter is entered after a client program has begun execution (e.g., via a23
user abort sequence, the enter client interface service, or a trap), the Open Firmware implementation shall24
restore the trap table register to point to its own trap table. If execution of the client program is subsequently25
resumed (e.g., with the go command), the Open Firmware implementation shall restore the trap table register to26
the value previously established by the client program.27

5.2.5. MMU28

The memory management unit (MMU), if present, shall be enabled.29

NOTE—Many client programs require no knowledge of the details, or even the existence, of the MMU.30
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5.2.6. Virtual address space and memory allocation1

When a client program begins execution, an Open Firmware implementation’s use of any virtual address space2
outside of the ranges 0xffd0.0000-0xffef.ffff and 0xfe00.0000-0xfeff.ffff shall have ceased, except for the virtual3
address space and associated memory that is allocated for the client program’s code and data, as specified in the4
client program header. Subsequently, the Open Firmware implementation shall not allocate virtual address space5
outside those ranges, except as needed for the execution of subsequent client programs or as explicitly requested by6
a client program.7

An Open Firmware implementation should use the virtual address space range 0xffd0.0000-0xffef.ffff in preference8
to the range 0xfe00.0000-0xfeff.ffff, to the extent that is possible. Furthermore, allocation within the range9
0xfe00.0000-0xfeff.ffff should allocate higher addresses before lower addresses.10

Client programs shall not depend on the ability to be loaded (as specified by its client program header) within11
either of those address ranges.12

NOTE—By inspecting the value of “available” and “existing” properties in an MMU package, if such a package13
exists, a client program can determine precisely which ranges of virtual address space the firmware is using. For maximum14
portability, a client program ought not depend on the availability of any particular “hardcoded” virtual address.15

5.2.7. Memory cache(s)16

IEEE Std 1754 does not specify the cache organization, thus cache details depend on the system architecture. As a17
general guideline, it is recommended that the initial program state should have caches enabled.18

5.3. Client interface handler19

The client interface handler shall perform the following sequence of operations:20

– invoke the Open Firmware client interface service specified by the argument array whose address was in %o021
when the code sequence was invoked.22

–  place the return value (indicating success or failure of the attempt to invoke the service) back in %o0.23

– return control to the client program at the address given by the value that was in %o7 when the code sequence24
was invoked, plus eight.25

The execution of the client interface handler, including the invocation of the client interface service, shall preserve26
the contents of all CPU registers other than %o0, %o1, %o2, %o3, %o4, and %o5.27

NOTE—This implies that in order to invoke a client interface service, a client program first constructs a client interface28
argument array and puts its address in %o0, puts the return address minus eight in %o7, and then jumps to the client interface29
handler (typically this is done by using a JMPL instruction with %o7 as the destination register).30

The client interface handler may assume that it is invoked with a valid stack with enough space free to store 2431
quadlets (enough for the active register window and the global registers), and that operational Window Overflow32
and Window Underflow trap handlers are installed in the current trap table.33

A client program calling a client interface service must ensure that when the client interface handler is invoked,34
the stack is valid and has enough space free to store 24 quadlets (enough for the active register window and the35
global registers), and that operational Window Overflow and Window Underflow trap handlers are installed in the36
current trap table.37

NOTE—These conditions are met when a client program first begins execution under the control of an Open Firmware38
implementation. In order to call client interface services, the client program must not destroy the integrity of the stack.39

6. User interface extensions40

An Open Firmware user interface implementation for an IEEE 1754-compliant processor should41
implement the following additional commands.42
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catch-interrupt ( level -- )1
Install simple interrupt hander for indicated interrupt priority level.2

Establish a handler for interrupt level (1-15). If an interrupt occurs on that level, the handler sets the value of3
interrupt-occurred? to true (-1) and sets the value of vector-used to the interrupt level.4

interrupt-occurred? ( -- a-addr )5
variable contains true if an interrupt occurred.6

A variable which will be set to true (-1) when an interrupt occurs on a level guarded by catch-7
interrupt.8

pil! ( level -- )9
Set the current CPU interrupt priority level (0 .. 15).10

The other (non-interrupt-priority) bits within the Processor Status Register are not changed.11

pil@ ( -- level )12
Return the current CPU interrupt priority level (0 .. 15).13

spacec! ( byte addr asi -- )14
Store byte at addr in space asi.15

spacec@ ( addr asi -- byte )16
Fetch byte from addr in space asi.17

spaced! ( qdata.lo qdata.hi qaddr asi -- )18
Store two quadlets at qaddr in space asi.19

qdata.hi is stored at qaddr, and qdata.lo at qaddr+4, using an STDA instruction. A trap may result if qaddr is20
not a multiple of eight.21

spaced@ ( qaddr asi -- qdata.lo qdata.hi )22
Fetch two quadlets from qaddr in space asi.23

qdata.hi is the contents of the location at qaddr, and qdata.lo is the contents of the location at qaddr+4. The24
operation is performed with an LDDA instruction. A trap may result if qaddr is not a multiple of eight.25

spacel! ( quad qaddr asi -- )26
Store quadlet quad at qaddr in space asi.27

A trap may result if qaddr is not a multiple of four.28

spacel@ ( qaddr asi -- quad )29
Fetch quadlet quad from qaddr in space asi.30

A trap may result if qaddr is not a multiple of four.31

spacew! ( w waddr asi -- )32
Store doublet w at waddr in space asi.33

A trap may result if waddr is not a multiple of two.34

spacew@ ( waddr asi -- w )35
Fetch doublet w from waddr in space asi.36

A trap may result if waddr is not a multiple of two.37

vector-used ( -- a-addr )38
variable contains the level of the last interrupt.39

A variable which will be set to the interrupt level when an interrupt occurs on a level guarded by40
catch-interrupt.41
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6.1. Machine register access1

The following commands represent registers within the saved program state. Executing the command2
returns the saved value of the corresponding register. The saved value can be changed by preceding the3
command with the new value and to. The actual registers are restored to the saved values when go is4
executed.5

Window Register Save Area6

Processors compilant with IEEE Std 1754 contain multiple register “windows.” The processor hardware7
physically implements a single set of the “global” registers (registers 0-7) and multiple (typically seven or8
eight) integer register “windows.” From the point of view of a typical program, the number of logical9
windows is limited only by the amount of memory available for the program stack. The hardware, through10
“Window Overflow” and “Window Underflow” traps, manages the hardware register windows11
transparently to the program, saving them to and restoring them from memory as necessary.12

The saved program state shall contain the values of the set of 16 windowed registers that was active when13
the state was saved. The process of saving the program state shall include flushing the other hardware14
register window sets to the locations reserved for them on the program’s stack. If the registers that specify15
those locations are invalid, an Open Firmware implementation may omit the flushing of the16
corresponding register window sets.17

The window register access commands (%o0-%o7, %l0-%l7, %i0-%i7) refer to one set of window18
registers at any given time; that set is known as the displayed register set. The various displayed register19
sets are denoted by small integers. Set zero is the set that was active when the program state was saved.20
Set one is the set that would be active if a RESTORE instruction were executed from set zero, and so on.21
The maximum set number is determined not by the number of hardware register window sets, but instead22
by the number of “logical” register window sets in use by the program at the time the state was saved.23
That maximum number can be less than, equal to or greater than the number of register windows24
implemented by the hardware.25

When the Forth Interpreter (User Interface) is invoked, after the program state is saved, the displayed26
register set shall be set to zero, and may be changed with the w command. If the displayed register set is27
zero, the register values shall be accessed from the saved program state. Otherwise, the values shall be28
accessed from the appropriate save area in the program stack.29

%f0 through %f31 ( -- n )30
Access floating point registers.31

Return (or set, if preceded by to) the value corresponding to the contents of the register with the same name as the32
command.33

%fsr ( -- n )34
Access floating-point state register.35

Return (or set, if preceded by to) the value corresponding to the contents of the register with the same name as the36
command.37

%g0 through %g7 ( -- n )38
Access saved copies of “global” registers.39

Return (or set, if preceded by to) the value, within the saved program state, corresponding to the contents of the register40
with the same name as the command.41

%i0 through %i7 ( -- n )42
Access saved copies of “in” registers.43

Return (or set, if preceded by to) the value, within the window register save area for the current display window,44
corresponding to the contents of the register with the same name as the command.45
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%l0 through %l7 ( -- n )1
Access saved copies of “local” registers.2

Return (or set, if preceded by to) the value, within the window register save area for the current display window,3
corresponding to the contents of the register with the same name as the command.4

%o0 through %o7 ( -- n )5
Access saved copies of “out” registers.6

Return (or set, if preceded by to) the value, within the window register save area for the current display window,7
corresponding to the contents of the register with the same name as the command.8

%pc and %npc ( -- n )9
Saved program counter and next program counter.10

Return (or set, if preceded by to) the value, within the saved program state, corresponding to the contents of the11
register with the same name as the command.12

%psr ( -- n )13
Saved processor state register.14

Return (or set, if preceded by to) the value, within the saved program state, corresponding to the contents of the15
register with the same name as the command.16

%tbr ( -- n )17
Saved trap base register.18

Return (or set, if preceded by to) the value, within the saved program state, corresponding to the contents of the19
register with the same name as the command.20

w ( window# -- )21
Set the current window for display of the %i?, %o?, and %l? registers.22

See also: .window.23

%wim ( -- n )24
Window invalid mask register.25

Return (or set, if preceded by to) the value, within the saved program state, corresponding to the contents of the26
register with the same name as the command.27

%y ( -- n )28
y register.29

Return (or set, if preceded by to) the value, within the saved program state, corresponding to the contents of the30
register with the same name as the command.31
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The following commands display the saved program state.1

.locals ( -- )2
Display all the integer registers in the current window.3

.window ( window# -- )4
Display all the integer registers in the window specified by window#.5

Equivalent to: w .locals6
NOTE—the current window will be changed to the value given by window#.7

.psr ( -- )8
Formatted display of the saved processor state register.9

This command sets the values in the program-counter registers.10

set-pc ( a-addr -- )11
Set %pc to a-addr and %npc to a-addr+4.12

6.2. Debugger extensions13

The commands dis, +dis, .instruction, and .adr shall display addresses and symbol name14
offsets in hexadecimal.15

return ( -- )16
Execute until a return from subroutine is reached.17

Set a breakpoint at the address given by register %i7 + 8 and then execute go.18

returnl ( -- )19
Execute until a return from subroutine is reached.20

Same as return except uses %o7 instead of %i7.21

6.3. Configuration variables22

watchdog-reboot? ( -- reboot? ) N23
If true, reboot automatically after watchdog reset.24

Configuration Variable Type: boolean. Suggested Default Value: false.25

6.4. Restrictions26

None.27
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