| EEE Draft Std P1275.1/D14a
Standard for Boot (Initialization
Configuration) Firmware
Supplement for IEEE 1754 | SA

18 August, 1994
DRAFT EDITION in response to SPONSOR BALLOTING

Sponsored by the IEEE Bus Architecture Standards Committee
Prepared by the P1275 Working Group

This is an unapproved draft of a proposed IEEE Standard, subject to change.
Permission is hereby granted for IEEE Standards Committee participants to
reproduce this document for purposes of IEEE standardization activities. If this

document is to be submitted to ISO or IEC, notification shall be given to the
IEEE Copyright Administrator. Permission is also granted for member bodies
and technical committees of ISO and IEC to reproduce this document for
purposes of developing a national position. Other entities seeking permission to
reproduce this document for standardization or other activities, or to reproduce
portions of this document for these or other uses must contact the IEEE
Standards Department for the appropriate license. Use of information contained
in this unapproved draft is at your own risk.

IEEE Standards Department
Copyright and Permissions
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331 USA

Copyright 1992-94 by the Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017 USA
All rights reserved.

-
QW Noulh~, WN -

e el
AWN PR

IEEE Draft Std P1275.1/D14a 18 August, 1994

Introduction

(This foreword is not a part of IEEE Draft Std P1275.1/D14aStandardfor Boot (Initialization Configuration) Firmware,
Supplement for IEEE 1754 ISA)

Firmwareis the ROM-basedsoftwarethat controlsa computerbetweenthe time it is turnedon andthe time the
primary operatingsystemtakescontrol of the machine Firmware’sresponsibilitiesncludetestingandinitializing
the hardware determiningthe hardwareconfiguration,loading (or booting) the operatingsystem,and providing
interactive debugging facilities in case of faulty hardware or software.

OpenFirmwareis the firmware architecturedefined by IEEE Std 1275-1994,Sandard for Boot (Initialization
Configuration) Firmware, Core Requirements and Practices. That standardis bus-independeninstruction-set-
independent, and system-independent.

The corerequirementsand practicesspecifiedby IEEE Std 1275-1994must be supplementedby system-specific
requirementgo form a completespecificationfor the firmware for a particularsystem.This standardestablishes
suchadditionalrequirementgertainingto the instructionsetarchitecturedefinedby IEEE Std 1754-1994 Open
Microprocessor Sandard.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

O©CooO~NOOUPW N P

10
11

12
13
14

15
16
17

18 August, 1994 IEEE Draft Std P1275.1/D14a

Working Group Members
The following individuals were members of the Working Group at the time this document was produced:
William M. (Mitch) Bradley, Chairman, FirmWorks David M. Kahn, Vice Chairman, Sun Microsystems Inc.

John Rible, Draft Editor, FORCE COMPUTERS Inc. Luan D. Nguyen, Secretary, IBM Corporation
Ron Hochsprung, Apple Computer Inc. Thanos Mentzelopoulos, Antel, Inc.
David L. Paktor, FORCE COMPUTERS Inc. Yongjae Rim, IBM Corporation
Paul Thomas, Sun Microsystems Inc. Mike Tuciarone, FirmWorks

Martin Walsh, Sun Microsystems Inc.

Contributors
The following individuals have contributed to this document:

Shawn Morrissey, FORCE COMPUTERS Inc. Mike Williams, SHL
Paul Fischer, FORCE COMPUTERS Inc. llan Rabinowitz, FORCE COMPUTERS Inc.

Sponsor Balloting Body
The following individuals were members of the Sponsor Balloting Body:

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

© 00 N O 0ol WDN P

e~ = N N S
a M W N PP O

[N
»

IEEE Draft Std P1275.1/D14a 18 August, 1994

Table of Contents

1o o 11 T3 1T o ii
R =T Y 1
A = =] =1 T = 1
G T 1= 0 1
4. Data formats and rePreSENTALIONSi ittt e e et e e e e e e e e e e et rne e e rbb e eeas 1
5. Client iNterfaCe MEOUINEIMENLS. ittt ettt r e e e e e e e et eeeebbenneeebbb s e e aeeeeaeeeees 1.
5.1. Client program lOAQINGoioe oottt e e e e e e e et bbb e e eaas 2.
I 11U = U o] oo Tir= 0 (IR = = 2
5.3. Client interface NANGIEL............u e e e s 5.
6. USEr INtErfaCe EXIENSIONSiiiiieieeeei it iee ettt ettt e et e e e e e e et e e e s e s s s e s n s 5
LN Y o Tod L Lo =0 1S (=T = T oL Y 4
I B L= o1 o o =T (=] £ 1] o] L PR SUPPPPPRPPPPINE 9
6.3. CoNfigUration VAIBDIES.iii i e e ettt e e e 9.
L L1 1 o3 T = 9

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

iv

O~NO U WN B

10
11

12
13

14

15
16

17

18
19

20
21
22

23
24

25

26
27

28
29
30
31
32

33
34
35
36

37

38
39

18 August, 1994 IEEE Draft Std P1275.1/D14a Overview

1. Overview

This standardspecifies the application of IEEE Std 1275-1994, Sandard for Boot (Initialization
Configuration) Firmware, Core Requirements and Practices to computersystemghat usethe instruction
setarchitecturgISA) definedby IEEE Std 1754-1994 A 32-bit Microprocessor Architecture, including
instruction-set-specificequirementsand practicesfor debugging,client program interface, and data
formats.Theserequirementsareimposeduponfirmware compliantwith IEEE Std 1275-1994whensuch
firmwareis usedon a computersystemthat usesthe abovelSA. The requirementsrenot imposedon the
ISA itself.

2. References

This standardshallbe usedin conjunctionwith the following publications Whenthe following standards
are superceded by an approved revision, the revision shall apply.

[1] IEEE Std1275-1994 Sandard for Boot (Initialization Configuration) Firmware, Core Requirements
and Practices

[2] IEEE Std 1754-1994A 32-hit Microprocessor Architecture

NOTE—Where the notation style diffepgetweenEEE Std 1275-1994and IEEE Std 1754-1994the notationof this document
follows that of IEEE Std 1275-1994.

3. Terms

This standardusestechnicaltermsasthey are definedin the documentgited in “References,’plus the following
terms:

3.1 cor e specification. Synonym for IEEE Std 1275-1994, Standard for Boot (Initialization Configuration)
Firmware, Core Requirements and Practices, i.e., the standardthat specifiesthe system-independergnd bus-
independent requirements for Open Firmware.

3.2 Open Firmware. The firmware architecture defined by IEEE Std 1275-1994 and its applicable supplements or,

when used as an adjective, a software component compliant with such an architecture.

4. Data formats and representations

The cell sizeshall be 32-bits.Numberrangesfor n, u, and other cell-sizeditems, are consistentwith 32-
bit two’s-complement number representation.

The requiredalignmentfor items accessedavith a-addr addresseshall be two-byte alignment(i.e. any
evenaddressis an acceptablea-addr). (This ISA requiresfour-byte alignmentat the hardwarelevel.
However, theForthimplementatiorcanhide this restriction;doing so canresultin worthwhile reductions
in ROM sizein somecases.An implementatiormay allow one-bytealignmentof a-addr addressedyut
shall not require alignment more strict than two-byte.

Eachoperationinvolving a gaddr addresshall be performedwith a single 32-bit accesgo the addressed
location; similarly, eackaddr access shall be performed with a single 16-bit ac€€bss, in conjunction

with the alignmentrequirementsmposedby the instructionsetarchitecturejmplies four-byte alignment

of gaddrs and two-byte alignment @faddrs.)

5. Client interface requirements

An Open Firmware client interface implementationfor an IEEE 1754-compliantprocessorshall behaveas
described below.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

abrw N

o
R OOWow~N O

=

12
13
14
15

16
17
18

19

20
21
22
23

Client interface requirements IEEE Draft Std P1275.1/D14a 18 August, 1994

5.1. Client program loading

5.1.1. Default load addr ess

The defaultload addresss the virtual addres$9x4000.At leastOx80000bytesof memoryshall be availableat that
addresslt is strongly recommendedhat as much memoryasis practicalfor the particular systembe available
there, thus allowing the loading of large client programs.

5.1.2. Client program header

An Open Firmware implementation shall recognize the sequence of eight quadlets déstoivada valid client
programheader(asusedby the | oad UserInterfacecommandin the core specification if the bf_magic and
bf format quadletscontainthe specifiedvalues.If either quadletdoesnot containthe specifiedvalue, the
behaviorof the OpenFirmwarel oad commandis implementation-dependenthe offsetsgiven below are from
the beginning of the loaded image. Each of the quadlets described below is in big-endian byte order.

Offset Name Contents
0 bf_magic 0x0103.0107.
4 bf text Size of the client program’s code.
8 bf_data Size of the client program’s initialized data.
12 bf_bss Size of the client program’s uninitialized data area.
16 bf padl Undefined.
20 bf_origin Client program entry address.
24 bf pad2 Undefined.
28 bf format Oxffff.ffff.

The programimageimmediatelyfollows the header After recognizingthis header| oad allocatesand
maps bf_text + bf data + bf bss bytes of memory beginning at the addressgiven by
bf_origin , movesthe programimage, of size bf_text + bf _data , to that addressand zeroes
bf bss bytes of memory beginning bt_origin +bf _text +bf data

NOTE—Someexistingclient programsuseothervaluesin bf_format . An OpenFirmwareimplementatiormayimplement
compatibility modesto handlesuchclient programs.The details of such compatibility modesare outsidethe scopeof this
standard.

5.2. Initial program state

This sectiondefinesthe “initial programstate,” the executionenvironmentthat exists when the first machine
instruction of a client program of the format specified above begins execution.Many aspectsof the “initial
program state” are establishedby i ni t - pr ogr am which setsthe saved-program-state so that subsequent
execution ofyo will begin execution of thelient program with the specified environment.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

2

18 August, 1994 IEEE Draft Std P1275.1/D14a Client interface requirements

1 521 Register values
2 The CPU registers shall contain the following values:

Register(s) | Value

Ypsr S=1

ICC=0

EF=1 if floating point coprocessor present

EC=1 if second coprocessor present

EE=0

ET=1

PIL: implementation dependent value sufficiently low to allow the Open Firmwa|
timer interrupt to occur

CWP: 0
%\ m 2
% br See 5.2.4.
%y 0
% 7 0

%06,% 6 | See 5.2.2.
%1, %02 | See 5.2.3.
%03 Address of client interface handler. See 5.3.

Other Otherglobal (%g0-%g7), local (% 0-% 7), in (% 0-% 5), andout (%00, %04, %05,
registers | %7) registersmay be used for conveying information required by other client
interfaceghat are outsidethe scopeof this standard Any registersthat are not used
for such purposes shall contain zero.

3 NOTE—Thestipulationthat unusedother registerscontainzero makesit possiblefor a firmware systemto supportmultiple

4 different client interfacessimultaneously For example,a firmware systemmight presentboth an Open Firmware client

5 interfaceand also a different interfacefor compatibility with someexisting client program.A client programcan determine

6 whetheror not a particularclient interfaceis presentby testingfor a nonzerovalue in one of the registersthat that client

7 interfaceuses.The presencef the OpenFirmwareclient interfaceis denotedby a nonzerovaluein %©3. An earlierfirmware

8 systemthat wasan ancestoof OpenFirmwareuses%©0 to passthe (nonzero)addressf its client interfacedatastructureto

9 the client program.
10 5.2.2.Initial stack
11 Whenthe first machineinstruction of a client program beginsexecution,there shall be a valid stackand the
12 processor state shall have the following characteristics:
13 - 9% 6 shall contain zero.
14 - %6 shall contain an 8-byte-aligned address referring to a location within an area of memory that the Open
15 Firmware implementation has allocated for use as the client program’s stack. That address shall be at least 9
16 bytes below the top address of the stack memory area (providing space for saving the window registers of the
17 current window), and at least 8000 bytes above the bottom address of stack memory area (providing room for
18 stack growth).
19 An OpenFirmwareimplementatiorshall handlewindow overflow trapsby savingthe “local” and“in” registersof
20 the window below the trap window to the address specified bygBeegister of that window.
21 An Open Firmware implementationshall handle window underflow traps by restoring the “local” and “in”
22 registers of the window above the trap window from the address specified¥yhegister of that window.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

3

RPOWOW O~NOOT AWN

o

13
14

15

16
17

18
19
20
21

22

23
24
25
26
27

28
29
30

Client interface requirements IEEE Draft Std P1275.1/D14a 18 August, 1994

5.2.3. Client program arguments

Registerd®1 and%®2 maybe usedto passto the client programan array of bytesof arbitrary content,with %01
containing the base address of the array%@®ithe length. If no suchrrayis passed%®1 and%®2 shallcontain
zero.

NOTE—The Open Firmware standardmakesno provision for specifying such an array or its contents.Therefore,in the
absencef implementation-dependerktensionsa client programexecuteddirectly from an OpenFirmwareimplementation

will not be passedsuchan array. However,intermediateboot programsthat simulateor propagatehe OpenFirmwareclient
interface to the programs that they load can provide such an array for their clients.

NOTE—Bootcommandine argumentstypically consistingof the nameof a file to be loadedby a secondaryboot program
followed by flags selectingvarious secondaryboot and operatingsystemoptions, are providedto client programsvia the
“boot ar gs” and “boot pat h” properties of the/chosen” node.

5.2.4. Trap table
In this subclausesave-state-and-interact meango savethe CPU stateto the extentpossible display (if possible)a

message indicating that the trap occurred, and return control to the Open Firmware user interface if it is present.

% br shall refer to a trap table which handles traps as described in this subclause.

OpenFirmwaretrap table entriesshall not contain PC-relativebranchoffsets,in order that client programscan
copy trap table entries without modifying them.

HardwareTrap # Name Behavior
5 Window Overflow | See 5.2.2.
6 Window Underflow | See 5.2.2.
0x11-0x1f Interrupt Vectors An Open Firmware implementation may use

certain interrupt vectors for internal functions,
examplemanagingthe timer usedto implement
the ALARM mechanism.Vectors that are not
used for such purposesshall save-state-and-
interact.

Oxff Software trap 127 | This trap vector is used for Open Firmware
breakpointsThe OpenFirmwarehandlerfor this
trap vector shakave-state-and-interact.

A client programthat installs its own trap table but wishesto continueusing Open Firmware servicesshould
preservethe OpenFirmwaretrap table entriesfor any trapsthat the client programdoesnot explicitly needto
handle.A goodtechniquefor doing this is to copy the contentsof the OpenFirmwaretrap tableinto the client
program’s trap table, and then to replace only those entries to be serviced directly by the client program.

A client program shall not alter entries within the Open Firmware trap table.

Whenan OpenFirmwarecommandinterpreteris enteredafter a client programhasbegunexecution(e.g.,via a
user abort sequencethe ent er client interfaceservice,or a trap), the Open Firmware implementationshall
restorethe trap table registerto point to its own trap table. If executionof the client programis subsequently
resumede.g.,with the go command)the OpenFirmwareimplementatiorshall restorethe trap table registerto
the value previously established by the client program.

5.25.MMU
The memory management unit (MMU), if present, shall be enabled.

NOTE—Many client programs require no knowledge of the details, or even the existence, of the MMU.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

4

-
QW NOUTPA~,WN -

P
N R

el e
g b w

16

17
18

19
20
21
22
23

24
25

26
27

28
29
30

31
32
33

34
35
36
37

38
39

40

41
42

18 August, 1994 IEEE Draft Std P1275.1/D14a User interface extensions

5.2.6. Virtual address space and memory allocation

When a client programbeginsexecution,an OpenFirmwareimplementation’suse of any virtual addressspace
outsideof the ranges0xffd0.0000-0xffef.ffff and Oxfe00.0000-0xfeff.ffffshall have ceasedexceptfor the virtual

addressspaceand associatesmemorythatis allocatedfor the client program’scodeand data,as specifiedin the

client programheader Subsequentlythe OpenFirmwareimplementatiorshall not allocatevirtual addressspace
outside those ranges, except as nedaletihe executionof subsequentlient programsor asexplicitly requestedy

a client program.

An Open Firmware implementation should use the virtual address space range 0xffd0.0000-0xffef.ffff in preference
to the range Oxfe00.0000-0xfeff.ffff, to the extentthat is possible. Furthermore,allocation within the range
0xfe00.0000-0xfeff.ffff should allocate higher addresses before lower addresses.

Client programsshall not dependon the ability to be loaded(as specifiedby its client programheader)within
either of those address ranges.

NOTE—RBY inspectingthe value of “avai | abl e” and“exi sti ng” propertiesin an MMU package,f sucha package
exists,a client programcan determinepreciselywhich rangesof virtual addressspacethe firmware is using. For maximum
portability, a client program ought not depend on the availability of any particular “hardcoded” virtual address.

5.2.7. Memory cache(s)

IEEE Std 1754doesnot specifythe cacheorganizationthuscachedetailsdependon the systemarchitecture As a
general guideline, it is recommended that the initial program state should have caches enabled.

5.3. Client interface handler
Theclient interface handler shall perform the following sequence of operations:

— invoke the Open Firmware client interface service specified by the argument array whose addre%svas in
when the code sequence was invoked.

— place the return value (indicating success or failure of the attempt to invoke the service)dk in

— return control to the client program at the address given by the value that%eéswhen the code sequence
was invoked, plus eight.

The execution of thelient interface handler, including the invocatioof the clientinterfaceservice shall preserve
the contents of all CPU registers other th@f, %01, %02, %03, Y04, and%®5.

NOTE—This implies that in orderto invoke a client interface service,a client programfirst constructsa client interface
argumentarrayandputsits addressn %00, putsthereturnaddressninuseightin %©7, andthenjumpsto the client interface
handler (typically this is done by using a JMPL instruction W7 as the destination register).

The client interface handler may assumethatit is invokedwith a valid stackwith enoughspacefree to store24
guadlets(enoughfor the active registerwindow andthe global registers) andthat operationaWindow Overflow
and Window Underflow trap handlers are installed in the current trap table.

A client program calling a client interfaceservicemustensurethat whenthe client interfacehandleris invoked,
the stackis valid and hasenoughspacefree to store24 quadlets(enoughfor the activeregisterwindow andthe
globalregisters) andthat operationaWindow Overflow andWindow Underflowtrap handlersareinstalledin the
current trap table.

NOTE—Theseconditionsare met when a client programfirst beginsexecutionunder the control of an Open Firmware
implementation. In order to call client interface servicesclimat program must not destroy the integrity of the stack.

6. User interface extensions

An Open Firmware user interface implementationfor an IEEE 1754-compliant processorshould
implement the following additional commands.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

5

© oOo~N OO0 W NP

e
()

o
w N

B
(62N

B
~N o

el
©

NN
]

N N
wWw N

NN
(61N

NN
~N O

N
(o]

W N
o o

w
-

w w
W N

w
~

w W
o Ol

w
~

wW W
O

P
O

User interface extensions IEEE Draft Std P1275.1/D14a 18 August, 1994

catch-interrupt (level --)
Install simple interrupt hander for indicated interrupt priority level.

Establish a handler for interruigvel (1-15). If an interrupt occurs on tHatel, the handler sets the value of
interrupt-occurred?totrue (-1) and sets the value wéct or - used to the interrupt level.

i nterrupt-occurred? (-- a-addr)
vari abl e containg r ue if an interrupt occurred.

A vari abl e which will be set td r ue (-1) when an interrupt occurs on a level guardedadayc h-
interrupt.

pil! (level --)
Set the current CPU interrupt priority level (O .. 15).
The other (non-interrupt-priority) bits within the Processor Status Register are not changed.

pil @ (--level)
Return the current CPU interrupt priority level (O .. 15).

spacec! (byte addr asi --)
Storebyte ataddr in spaceasi.

spacec@ (addr asi -- byte)
Fetchbyte from addr in spaceasi.

spaced! (gdata.lo qdata.hi gaddr asi --)
Store two quadlets gaddr in spaceasi.

gdata.hi is stored atjaddr, andqgdata.lo atgaddr+4, using an STDA instruction. A trap may resuljafidr is
not a multiple of eight.

spaced@ (gaddr asi -- qdata.lo qdata.hi)
Fetch two quadlets fromaddr in spaceasi.

gdata.hi is the contents of the locationga#ddr, andqgdata.lo is the contents of the locationgetddr+4. The
operation is performed with an LDDA instruction. A trap may resujaddr is not a multiple of eight.

spacel ! (quad gaddr asi --)
Store quadleuad atgaddr in spaceasi.
A trap may result ifladdr is not a multiple of four.

spacel @ (gaddr asi -- quad)
Fetch quadletuad from gaddr in spaceasi.
A trap may result ifladdr is not a multiple of four.

spacew (w waddr asi --)
Store doubletv atwaddr in spaceasi.
A trap may result ifvaddr is not a multiple of two.

spacew@ (waddr asi -- w)
Fetch doublew from waddr in spaceasi.
A trap may result ifvaddr is not a multiple of two.

vect or - used (-- a-addr)
vari abl e contains the level of the last interrupt.

A vari abl e which will be set to the interrupt level when an interrupt occurs on a level guarded by
catch-interrupt.

Copyright 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

6

18 August, 1994 IEEE Draft Std P1275.1/D14a User interface extensions

6.1. Machineregister access

The following commandsepresentegisterswithin the saved program state. Executingthe command
returnsthe savedvalue of the correspondingegister.The savedvalue can be changedoy precedingthe

commandwith the new valueandt 0. The actualregistersare restoredto the savedvalueswhengo is

executed.

Window Register Save Area

Processorsompilantwith IEEE Std 1754 containmultiple register‘windows.” The processohardware
physicallyimplementsa singlesetof the “global” registergregisters0-7) andmultiple (typically sevenor
eight) integerregister“windows.” From the point of view of a typical program,the numberof logical
10 windows is limited only by the amount of memory available forptigyramstack.The hardwarethrough
11 “Window Overflow” and “Window Underflow” traps, managesthe hardware register windows
12 transparently to the program, saving them to and restoring them from memory as necessary.

O©oo~N O OPhWN -

13 Thesaved program state shall contain the values tife setof 16 windowedregisterghatwasactivewhen
14 the statewas saved.The processof savingthe programstateshall include flushing the other hardware
15 register window sets to tHecationsreservedor themon the program’sstack.If the registerghat specify
16 those locations are invalid, an Open Firmware implementation may omit the flushing of the
17 corresponding register window sets.

18 The window registeraccesscommands(%®©0-%7, % 0-% 7, % 0-% 7) refer to one set of window
19 registersatanygiventime; thatsetis knownasthe displayed register set. The variousdisplayed register

20 sets aredenotedby smallintegers.Setzerois the setthat wasactivewhenthe programstatewas saved.
21 Setoneis the setthatwould be activeif a RESTOREinstructionwereexecutedrom setzero,andsoon.

22 Themaximumsetnumberis determinechot by the numberof hardwareregisterwindow sets,but instead
23 by the numberof “logical” registerwindow setsin useby the programat the time the statewas saved.
24 That maximum number can be less than, equal to or greaterthan the number of register windows
25 implemented by the hardware.

26 Whenthe Forth Interpreter(User Interface)is invoked, after the programstateis saved,the displayed
27 register set shallbesetto zero,and may be changedwith thew commandlIf the displayed register set is
28 zero,the registervaluesshall be accessedrom the saved program state. Otherwise the valuesshall be
29 accessed from the appropriate save area in the program stack.

30 9% O through% 31 (--n)

31 Access floating point registers.

32 Return (or set, if preceded by) the value corresponding to the contents of the register with the same name as the
33 command.

34 Y% sr (--n)

35 Access floating-point state register.

36 Return (or set, if preceded by) the value corresponding to the contents of the register with the same name as the
37 command.

38 %0 through%g7 (--n)

39 Access saved copies of “global” registers.

40 Return (or set, if preceded by) the value, within theaved program state, corresponding to the contents of the register
41 with the same name as the command.

42 % 0 through% 7 (--n)

43 Access saved copies of “in” registers.

44 Return (or set, if preceded by) the value, within the window register save area for the current display window,

45 corresponding to the contents of the register with the same name as the command.

Copyright 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

7

© oOo~N OO0 W NP

10

User interface extensions IEEE Draft Std P1275.1/D14a 18 August, 1994

% 0 through% 7 (-n)

Access saved copies of “local” registers.

Return (or set, if preceded by) the value, within the window register save area for the current display window,

corresponding to the contents of the register with the same name as the command.

%0 through%e7 (-n)

Access saved copies of “out” registers.

Return (or set, if preceded by) the value, within the window register save area for the current display window,

corresponding to the contents of the register with the same name as the command.

Y%c andY%mpc (-n)

Saved program counter and next program counter.

Return (or set, if preceded by) the value, within theaved program state, corresponding to the contents of the
register with the same name as the command.

%psr (--n)

Saved processor state register.

Return (or set, if preceded by) the value, within theaved program state, corresponding to the contents of the
register with the same name as the command.

% br (-n)

i

%

Saved trap base register.

Return (or set, if preceded by) the value, within theaved program state, corresponding to the contents of the
register with the same name as the command.

(window# --)
Set the current window for display of the?, %©?, and% ? registers.
See also: . wi ndow.
m (--n)
Window invalid mask register.

Return (or set, if preceded by) the value, within theaved program state, corresponding to the contents of the
register with the same name as the command.

(--n)
y register.

Return (or set, if preceded by) the value, within theaved program state, corresponding to the contents of the
register with the same name as the command.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

8

O© 00 NO O b~ wWN -

10

11
12

13

14
15

16
17

18

19
20

21

22

23
24

25

26
27

18 August, 1994 IEEE Draft Std P1275.1/D14a

User interface extensions

The following commands display tisaved program state.

.local s (--)
Display all the integer registers in the current window.

. Wi ndow (window# --)
Display all the integer registers in the window specifieavinglow#.

Equivalentto: w . | ocal s
NOTE—the current window will be changed to the value givewibgow#.

. psr (--)
Formatted display of the saved processor state register.

This command sets the values in the program-counter registers.

set - pc (a-addr --)
Set%pc to a-addr and%npc to a-addr+4.

6.2. Debugger extensions

The commandsdi s, +di s, .instruction, and. adr shall display addressesand symbol name

offsets in hexadecimal.

return (--)
Execute until a return from subroutine is reached.

Set a breakpoint at the address given by rediét@r+ 8 and then execugm.

returnl (--)
Execute until a return from subroutine is reached.

Same as et ur n except use%©7 instead oP46 7.

6.3. Configuration variables

wat chdog- r eboot ? (-- reboot?)
If t r ue, reboot automatically after watchdog reset.

Configuration Variable Typéoolean. Suggested Default Valukal se.

6.4. Restrictions
None.

Copyright0 1992-1994 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

9

