IEEE Standard for Boot (Initialization Configuration)
Firmware: Core Requirements and Practices

1. Overview

1.1 Purpose and scope

This document describes a software architecturetierfirmware that controls a computebbeforethe operating
system has begun execution. Typically, firmware is stored in read-only memory (ROM) or programmable read-only
memory (PROM), so that it may be executed immediately after the computer is turned on.

The mainjobs ofthe firmware are to test the machine hardward tobootthe operatingystem, usually from a

mass storage device or a network. The operating system may also require other services from the firmware. Finally,
firmware often provides some support for interactive hardware and software debugging. In additionain thp-

erating system, other programs, such as diagnostic operating systems, may utilize firmware services.

This standardusesOpenBoot PROM Architecture SpecificatifB6]* as a starting point, and ks, vendor,
operating system (OS), and instruction-set-architecture (ISA)-independent. Supplements (numbered X)275.
include specifications for this standard’s application to particular ISAs and buses.

This document specifies firmwarthat controls the operation of a compussistem beforéhe primary operating
systemhas taken control of the machine. The matesjecified includes facilities fadetermining the hardware
configuration; testing, identificationand use of plug-in devicesprior to primary OS control; reporting the
hardware configuration to the operatisgstemithe user interfacéor controlling these operationanddebugging
facilities for hardware and system software.

Additional introductory material can be found in annex F.

1.2 Firmware problems

In an open-systems environment, the job of loading the operating system is greatly complicatqubbgilthity of
user-installed I/O devices. tifie firmware developer knows in advantiee completelist of I/O devices from which
the operatingsystem may be loadethen thesoftware drivers for thosdevices may easily becluded in the
firmware. If, however, nevbootable devices (devices frowhich the operatingystem may be loaded) may be
added to the system later, then the firmware must have a way to duuptideivers for those device$he obvious
solution of shipping @omplete set of systefirmware with each newlevice quickly becomesnpractical as the
number of devices and systems grows.

A similar situation applies to théevices used for displaying messages showhegprogress of the testing and
booting processe3he firmware must have a drivéar eachdevice onwhich it wishes to display messages. One
solution is to require every display device to emulate some baseline dehicsolution works, buthe constraints
that it imposes on hardware can increase costs and stifle innovation.

Hardware innovation caproceed more rapidly when a single generic versidhebperatingystemcanwork on
several different computensithin the samefamily. If the different computertook exactlythe same to the
software then this iseasy, but it isare to findtwo different computerghatlook exactlythe same at the operating
system level. Howevesince the firmware can lmnsidered in some sense tofdzet of the hardware, then the
firmware cansometimes makéhe operatingsystem’stask of autoconfiguration(adapting to minor hardware

1 The numbers in brackets preceded by the letter B correspond to those of the bibliography in annex J.

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

differences) easiegither by hiding thealifferences or byeporting the hardware characteristics so the operating
system does not have to guess.

1.3 Solutions

The Open Firmware architectuselves those problemand in additionprovides extensive interactive features for
hardware and software debugging.

The design of Open Firmware is processor-independedtvery effort wasnade to eliminat&nowledge of ma-
chine details from the specification of its interfaces.

The following Open Firmware features are notable:

— Plug-in device drivers.New devices may baedded to an Open Firmwasgstemandused for booting or mes-
sage display without modification the mainOpen Firmwaresystem ROM.Each sucldevice has its own
plug-in driver, usually located in a ROM othe device itself. Thus, theset of 1/Odevices supported by a
particular system may evolve without requiring changes or upgrades to the system ROM.

— FCode. Plug-in drivers are written in byte-codedmachine-independent interpreted language cdllédde
FCode is based drorth semantics. SindeCode ismachine-independent, the saneviceand driver can be
used on machines with differe@PU instruction sets. Each Open Firmwanestem ROMcontains arFCode
interpreter.

— Device tree.The set oflevicesattached to theystemjncluding permanently installedevicesandplug-in de-
vices is described by an Open Firmware data structure known devee tree The operatingystem may in-
spectthe devicetree to determine the hardware configuration ofdygtem.Eachdevice inthe devicetree is
described by aroperty list The set opropertiesdescribing a device is arbitrarily extensible so thattgpg of
device and any kind of information that needs to be reported about the device can be accommodated.

— Modularity. Some Operrirmware features (such as bootirge required, andthers are optional. Theet of
Open Firmware features supported on a particsj)atem may be chosen to mést goalsand constraints of
that system.

— Programmable user interface.The Open Firmware user interface is based on the industry-standard interactive
programming language Forth so thegquences of user commandsn becombined to form complete
programs. Thiprovides a powerful capability for debuggihgrdware andgoftware; Open Firmware is\ery
good tool forthe initial “bring-up” of new hardware andsoftware. In addition,the Open Firmware
programming features can often be used to implement “work-arounds” for many kinds of system bugs.

— FCode debuggingThe Open Firmware user interface language (Famtd) theFCodelanguage share @m-
mon interpretation mechanism, so it éasy to develomnd debug FCode programswith built-in Open
Firmware tools.

— Operating system debuggingOpen Firmware has commantts debugging operatingystem code, often
making the use of a kernel debugger unnecessary.

1.4 Document organization

In this document, Open Firmwaredescribed in terms of itsxternal interfaceand the internastructures and
procedures on which those interfaces depend. See figure 1. The content of the clauses and annexes is as follows:

— Clause 1 provides the background for understanding the goals and objectives of this document.

— Clause 2 provides a list of documents used as references, deértesminology usedand describeghe as-
sumptions made by this standard.

— Clauses 3 and 4 define the internal structures and procedures upon which the Open Firmware model is based.
— Clause 5 defines th#evice interfacdor identification and use gflug-in devices
— Clause 6 defines thdient interface which provides services to booted programs.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994
— Clause 7 defines theser interfaceacommand interpretefor human use.

— Annex A gives detailed definitions o&éll the individual commands methods properties configuration
variables and strings mentioned in this document.

— Annex B defines the escape sequences of the terminal enpdatage

— Informative annexes C through | give additional useful informatrariuding device driversource codexam-
ples, suggested behavior of development tools, histogicdlcompatibility notesand an index ofjlossary
terms.

Open Firmware Open Firmware

User Interface Client Interface
Client Program
S~ _—| (Operating System)
Device Tree

Open Firmware

Open Firmware | Device Interface
Expansion Bus

Ex%nsion % | C)) I =7

b

Network

Figure 1—Typical Open Firmware system diagram

1.5 Compliance

In order to comply with this standard, a system shall implement at least one of the following interfaces:

Interface Clause _Req_u irements
given in subclause
Device interface 5 51.2
Client interface 6 6.1.2
User interface 7 7.1.2

A systemclaiming compliance witlthis standard shadllearly specifywhich of theaboveinterfaces are claimed to
be compliant.

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

2. References, definitions, and assumptions

2.1 References

This standard shall based in conjunction withthe following publications.When they are superseded by an
approved revision, the revision shall apply:

ANSI X3.64-1979(Reaff 1990), Additional Controls fotdse with the American National Standaxdode for
Information Interchange.

ANSI X3.215-1994, American National Standard for Information Systems—Programming Languages—Forth.
IEEE Std 100-1992, The New IEEE Standard Dictionary of Electrical and Electronics Terms fANSI).

IEEE Std 1275.1-1994, IEEE Standdodt Boot (Initialization Configuration) Firmware: Supplemeéior IEEE
1754 I1SA.

IEEE Std 1275.2-1994, IEEE Standdodt Boot (Initialization Configuration) Firmware: Supplemeior IEEE
1496 Bus (SBus).

IEEE P1275.3, Standafdr Boot (Initialization Configuration) Firmware—Supplemeot VMEbus, D1, August
19944

IEEE P1275.4, Standardor Boot (Initialization Configuration) Firmware—Supplemerfor IEEE 896
(Futurebus+) Bus, D13, August 1994.

ISO 8859-1 : 1987, Information processing—8-bit single-loyt@edgraph charactesets—Part 1: Latin alphabet
No. 15

RFC783, Trivial File Transfer Protocol (TFTP) Protocol Definition, NIC, June £981.

RFC906 Bootstrap Loading using TFTP, NIC, June 1984.

2.2 Special word usage

The following words havevery specificmeanings and aresed inthis standard tdlifferentiate betweernequired
and optional features of the Open Firmware specification:

— The wordshallis used to indicatsmandatoryrequirements.
— The wordshouldis used to indicatadvisoryrequirements (that which is strongly recommended).
— The wordmayis used to indicateptional requirements.

2 ANSI publications are availabfeom the Sales Department, Americhiational Standards Institute, Mest42nd Street13th Floor, New York,
NY 10036, USA.

3 |EEE publications are availabfeom the Institute of Electrical and Electronics Engineers, W5 Hoes Lane, P.O. Bo%331, Piscataway, NJ
08855-1331.

4 Numbers preceded by the letteraRe authorized standards projects thate not approved by th&€EE Standards Board #e time of this
document’s publication. For information about obtaining drafts, contact the IEEE.

51S0 publications are available from the ISO Central Secretariat, Case Postale 56, 1, rue de Chterfiid, Genéve20, Switzerland/Suisse. I1SO
publications are also available tine United States from the Sales Department, Amefiational Standards Institute, M/est42nd Street]13th
Floor, New York, NY 10036, USA.

6 Internet RFCs are retrievable by FTPdatinternic.net /rfcnnn.txt (where nnn is a standard’s publication number, sd@8as 906), orcall
InterNIC at 1-800-444-4345 for information about receiving copies through the mail.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

2.3 Definitions of terms

The following definitions give the meanings of the technical terms asatleessed inthis standard. Terndefined
herein are italicized upon their firstcurrence in each subclause throughbet rest of the document. Terms
related to the Forth programming language are defined in ANSI X3.215t1994.

2.3.1 active packageThe package, if any, whose methods are accessible by name to the command interpreter, and
to which newly created methods andproperties are added.

2.3.2 alignment:The suitability of particular addressfs accessingparticulartypes ofdata. For examplesome
processors require even addresses for accessing 16-bit data items.

2.3.3 big endian:A representation of multibytenumerical values in whichbytes with greater numerical
significance appear at lower memory addresses.

2.3.4boot: To load and execute a client program.

2.3.5 built-in device:A device that is either permanently attached to the computer system, not easily removable, or
present in all system configurations (i.e., not optional).

2.3.6 byte:A unit of computer data consisting of 8 bhits.
2.3.7 cell:The primary unit of information in the architecture of a Forth System. See 2.3.2.

2.3.8 childnode: A nodethat“descends” fromanother node, i.e., allodes excephe root nodeSee alsoparent
node

2.3.9 client execution environmentThe machine state that exists when a client program begins execution.
2.3.10 client interface:A set of data and procedures giving a client program access to client interface services.

2.3.11 client interface handler:A mechanism by which contraind data are transferré@m a client program to
the firmware, and subsequently returned, for the purpose of providing client interface services.

2.3.12 client interface servicesThose servicethat Open Firmware provides to client programs, includiegice
tree access, memory allocation, mapping, console 1/0, mass storage, and network 1/O.

2.3.13 clientprogram: A softwareprogram that idoadedand executed by Open Firmware (or a secondargt
program). (The client program may use services provided by the Open Firmware client interface.)

2.3.14 closeTo destroy a package instance.

2.3.15 colon definition:A command defined as a sequence of previously existing commands.

2.3.16 commandAs applied to this standard, a procedure in the Forth programming languageethgon of a
command performs some operation, usually affediiregstate of one or momystem resources in a predefined

way. (Newcommands may be defined as sequences of previously defined commands. Most commands have
human-readable names expressed as a sequence of textual ch&aetalsoForth word ; word name.)

2.3.17command group:A set of commands with defined behaviotse group as awvhole providing some

particular capability (for example, one command group is concerned with client program debugging).

“Information on references can be found in 2.1.

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

2.3.18commandinterpreter: The portion of a Fortlsystemthat processes usémnput and Forth languagsurce
code by accepting a sequency of textual characters representing Forth word names and executing the corresponding
Forth words.

2.3.19 configuration variable:A named parametewhose value is stored in nonvolatile memadtat controls
some aspect of the firmware’s behavior.

2.3.20 consoleA device used athe primary means of communication witth@manbeing, consisting of an input
device, used for receivingformation supplied by theuman, and aoutput device, used faending information

to the human(Typically, a console igither an ASClterminalconnected to a serial port ttre combination of a
text/graphics display device and a keyboard.)

2.3.21 current instanceThe package instance whose private data is currently accessible.
2.3.22 data stackA stack that may be used for passing parameters between Forth definitions.

2.3.23 decompiler:A software componerthat takes one or more compiled Forth commaadd generates the
equivalent text representation for those commands.

2.3.24defer word: A Forth word whosename hasbheen enterednto the dictionary(by the definingword
defer), but whose action was left unresolved and may be resolved at a later time.

2.3.25 deviceA hardware unit that is capable of performing some specific function.
2.3.26 device aliasA shorthand representation for a device path.

2.3.27device arguments:The component of a node nathat isprovided to a packagetgpen method to provide
addtional device-specific information.

2.3.28 device driver:The software responsible fananaginglow-level I/O operations for garticular hardware
device or set of devices. Contains all tievice-specific code necessaryctitmmunicate with a@eviceandprovides
a standard interface to the rest of the syst&ee. alsofirmware device driver; operating system device driver

2.3.29 device interfaceOne of the interfacespecified inthis standard thaallows devices to be identified,
characterized, and used to assist other Open Firmware functions such as booting.

2.3.30 devicenode: A particular entry in thelevicetree, usually describing a singlevice or busgonsisting of
properties, methodsind private data. (Adevice node may havaultiple child nodesand hasexactly oneparent
node. The root node has no parent node.)

2.3.31 device pathA textual name identifying a device node by showing its position in the device tree.

2.3.32 device specifierEither adevicepath, adevicealias, or a hybrigpath thatbegins with adevicealias and
ends with a device path.

2.3.33 device treeA hierarchical data structure representing the physical configuration sfstean (The device
tree describethe properties of theystem’s deviceand thedevices’relationships to one anothdvlost Open
Firmware elements [devices, buses, librariesaffware procedures, et@je named antbcated bythe device
tree.)

2.3.34 device typeldentifies the set of propertieand package classethat anode is expected to implement.
Specified by thedevice_type " property.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

2.3.35 disassemblerA program that translates machimede into an equivalent human-readaldssembly-
language representation.

2.3.36 disk label:Contains descriptive information, usually in a well-known location such as phikicél zero,
about the device and the media and may include logical partitioning information.

2.3.37doublet: A unit of computer data consisting of 16 bits.

2.3.38 driver name: The component of a node nartfeat corresponds to thealue of the device’s ‘hame”
property.

2.3.39FCode: A computer programming language definedthig standard, which isemantically similar to the
Forth programming language butescoded as a sequence of binayte codesepresenting a defined set of Forth
definitions.

2.3.40 FCode driver:A devicedriver, written in FCode, intended for use by Open Firmvaare its clientpro-
grams.

2.3.41 FCod€unction: A self-contained procedurahit of theFCodeprogramming language to which &Code
number may be assigned.

2.3.42 FCodeevaluator: The portion of Open Firmwarhat processes FCodaograms by reading sequence of
bytes representing FCode numbers and executing or compiling the associated FCode functions.

2.3.43 FCodenumber: A number from 0 to 4095 (conventionally written in hexadecimal as 0x00 to OxQ@R&t-)
denotes a particular FCode function.

2.3.44 FCode probingThe process of locating and evaluating an FCode program.

2.3.45 FCodeprogram: A programencoded as a sequencebgte codesaccording to the rules of theCode
programming language.

2.3.46 FCode sourceAn FCode program in text fornsee alsotokenizer.

2.3.47 firmware: A program,typically stored in read-only memorthat controls a computer from the tintleat it
is turned on until the time that the primary operating system assumes control of the computer.

2.3.48 firmware device driver:A devicedriver intended for use by firmwar€ontrast with:operating system
device driver. See alsodevice driver.

2.3.49 Forth word: See:command

2.3.50 frame buffer: A hardwaredevicethat isused as an interface between a compatet avideo monitor,
generally containing an array wfemorythat is written by theomputingsystem (softwarednd is read bgpecial
hardware for the purpose of display.

2.3.51 ihandle:A cell-sized datum identifying a particular package instance.

2.3.52 instanceSee:package instance

2.3.53 leaf nodeA device node that has no children.

2.3.54 least significantWithin a group of data items (e.dits or bytes)that, taken as ahole, represents a
numerical value, the item within the group with the smallest numerical weighting.

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

2.3.55 little endian:A representation of multibytaeumerical values in whichyteswith lesser numerical signifi-
cance appear at lower memory addresses.

2.3.56 load:To movethe image of a client program from a long-term storage medium (such as a disk) into
memory where it may be executed.

2.3.57 memory management unit (MMU):A devicethat performs address translatitbetween a CPU'sirtual
addresses and the physical addresses of some bus; typically, the bus represented by the root node.

2.3.58method: A software procedure associated with a package.
2.3.59 MMU: See:memory management unit

2.3.60most significant: Within a group of data items (e.dits or bytes)that, taken as ahole, represents a
numerical value, the item within the group with the greatest numerical weighting.

2.3.61 nodeiln the context of Open Firmware, node is a synonym for device Begealsodevice node

2.3.62 node nameA text string of the form driver-name@unit-address:device-arguments ", which
identifies a device node within the address space of its parent.

2.3.63 nonvolatile memory:Computer memory whose contents are preserved when the system power is off.
2.3.64 openiTo create a package instance.

2.3.65 Open Firmware:Firmware conforming to IEEE Std 1275-1994, IEEE StandardBoot (Initialization
Configuration) Firmware: Core Requirements and Practices.

2.3.66 operating system device driverA devicedriver intended for use by a primary operatsygtem.Contrast
with: firmware device driver. See alsodevice driver.

2.3.67 packageThe combination of a node’s properties, methods, and private data.

2.3.68 package instanceA data structure resulting from the opening of a particular package, consisting of a set of
values for the package’s private data.

2.3.69 parentnode: The node to which device node igttached. Eactievice nodéhasexactly oneparentnode,

except the root node, which has none. (A device node descends from its parent node. Traveling “up” the device tree
takes one through parent nodes to the root node. Traveling “down” the device tree takesugiechildnodes to

the leaf nodes.)

2.3.70 phandle:A cell-sized datum identifying a particular package.

2.3.71 physical addressA unique identifier that selects a particular device from the set dégites connected to
a particular bus.

2.3.72 physical address spac&he set of possible physical addresses for a particular bus.

2.3.73 plug-in deviceA devicethatmay beinstalled andemoved at will, especially devicethat is attached to a
bus intended for system expansion.

2.3.74 plug-in driver: A package, usually associated with a plugieviceand serving as the interface tbat
device, that is created by evaluating an FCode program resident on that device.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

2.3.75 printable character:A character in the range 0x21 through OX7E or the range OxA1l through (B2EE
2.3.3).

2.3.76 private data:Data, associated with a packagiat isused bythe methods othat package but is not
intended for use by other software.

2.3.77 probe addressThe address of aevice that is known when theassociated FCoderogram begins
execution.

2.3.78 prop-encoded-arrayThe primitive datatype, consisting of a sequence loftes, used taepresent a
property value.

2.3.79 property: A descriptive item, consisting of an identifying propargme and a@associated property value,
that represents some characteristic of a device node or of its associated device.

2.3.80 property encoding:A specificdata formatdefined bythis standard, that issed to represent variotygpes
of information within a prop-encoded-array.

2.3.81 property name:A text string used to specify, or name, a particular property.

2.3.82 property value:The data portion of a property, stored in property encoding format.

2.3.83 quadlet:A unit of computer data consisting of 32 bits.

2.3.84 root nodeThe device node that is the root of the device tree.

2.3.85 saved program stateThe set of informationnecessary to begin or resurttee execution of a client
program, describing the machine state (includ@igU registers)that will be established upon resumption or

initiation of client program execution.

2.3.86 script:An area of nonvolatilenemory reserved for user interface commands to be evaluapedtaular
times during the Open Firmware start-up sequence.

2.3.87 secondary boot programA client program whose purpose is to load and execute another client program.
2.3.88 selectContext determines which of the following applies:

— To establish a particular device node as the active package.

— To establish a particular device as either the console input device or console output device.

— To establish a particular instance as the current instance.

2.3.89 stack‘A last-in, first-out(LIFO) data structure. Thidocument sometimes ustee phrase “the stack” to
mean “the Forth data stack”.

2.3.90 stack diagram‘A notational convention used &how the effect of aForth word onthe data stacland,
where applicable, the input buffer and return stack. See ANSI X3.215-1994 for syntactic details.

2.3.91 static methodA method that can be executed without an instance of its package.

2.3.92support package:A package, residing in thgpackages node,that provides a service to assist in the
implementation of a particular device type.

2.3.93 terminal emulator: Softwarethat makes a frame-buffer appear to hate characteristics of a cursor-
addressable text terminal.

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

2.3.94 textwindow: Thatportion of a display scredhat isbeing used to display text (human-readable characters
and words).

2.3.95 tokenizer:A development tool that converts FCode sowmde into a (binary) FCode program.

2.3.96 trace:To executethe componensteps of a computer program, displayithg state ofselected system
resources after each step.

2.3.97 unit addressThe component of a node naitiat indicates thedevice node’s positiowithin the address
space defined by its parent node.

2.3.98 user interfaceThe portion of a firmwarsystemthat processes commands entered thwenan. (Theuser
interface defined bythis standardconsists of a Forth command interpreter plus a set of Redtus for
interactively performing various Open Firmware functions. Irfully elaboratedform, the Open Firmware user
interface gives interactive access to all Open Firmware capabilities.)

2.3.99value word: A Forth word created byhe definingword value . (A value word, when executed by
itself, places a numeric value time data stack, much likeanstant . The numeriosalue of avalue word is
changed by preceding it with the Forth weéwd.)

2.3.100 var-aligned:Alignment suitable for the storage of a Forth variable.

2.3.101 virtual address:The addresghat a progranuses to access a memory location or memory-mageede
register. (Depending on the presencalmsence of memory apping hardware in thgystemandwhether or not
that mapping hardware Bnabled, a virtual addressay or maynot be the same as the physical addibas
appears on an external bus.)

NOTE—The use othe termvirtual addressin this document does implyhat Open Firmwareecessarily usemapping
hardware if it is present on a particular system.

2.3.102 word:See:Forth word .

2.3.103 word nameA text string denoting a particular Forth word.

2.4 Forth language assumptions and conventions

This subclause contains basic rules fmmeric interpretation, syntax, stack commerid so on. Théollowing
conventions and assumptions apply to all commands in this document (unless specified otherwise).

241 General conventions

— All numbers in thisdocument are decimal numbers unless indicatedrwise. Hexadecimal (base sixteen)
numbers are indicated in the text with a “Ox” prefix, i.e., 0x1234, or witlsuffex “(hex)”. Notethat this is a
documentation convention: Tlswmmand interpretefdescribed in 7.2) is not required itderpret numbers
with a “0x” prefix or a “(hex)” suffix. The h# command (i.e.h# ffeO) may be used to specifiex numbers
when using the command interpreter.

— All numbers on the stack are signed integers, _32 bits, unless stated otherwise.

— The word “address” refers to w@rtual addressthat occupies one cellunless otherwise specifiedhe initial
value ofbase when a Forth oFCode programbegins execution is not defined; consequertkig, program
should explicitly set the desirdiise value if needed for numeric input or output.

— The actuahklignmentvalue for avar-alignedaddress is implementation-specific, ishill be at leasfioublet
(2-byte) aligned.
— Additional notation conventions are described in A.1.2 of annex A.

10

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

2.4.2 Data types

The following data types represent numerical values or bit patterns:
— byte. An 8-bit value.

— cell. A value consisting of at least 32-bits, capable of representirgual address The actual cell sizéor a
particular ISA shall be specified in the ISA supplement for that ISA.

— doublet. A 16-bit value.
— quadlet. A 32-bit value.

243 ANS Forth compatibility

This Open Firmware standafdllows the conventiongnd guidelines laid out iPANS Forth, with thefollowing
clarifications (items marked with an asterisk [*] are implementation-specific):

display after return dAACCEPTandEXPECT advance to beginning of next line
aligned address requirements: *
behavior ofEMIT for non-graphic values: *
case sensitivity: case-insensitive
character-aligned address requirements: none
character set, character editingfd@@CEPTandEXPECT see 7.2.1
character set: ISO 8859-1 : 1987
control-flow stack: *
console input and output device:
exception abort sequence: *
input line terminator: *
display after input terminates ACCEPTandEXPECT advance to beginning of next line
maximum string length fdEENVIRONMENT,?n characters: 31
method of selection of console input and output device: see 4.2.5
methods of dictionary compilation: ~ *
methods of memory space management: *
minimum search order: *
number of bits in one address unit: 8 bits

ranges for n, +n, u: 32 bits (two’s complement)
ranges ford +d ud: _ 64 bits (two’s complement)
size of one cell in address units: _ 4

size of one character in address units: 1
size of the console input device’s text-input buffer: 128
size of the pictured-numeric-output-string buffer: 66
size of the scratch area whose address is returnedy N/A
list of non-standard words usifAD N/A
treatment of control characters for space-delimited parsing: control characters are always
treated as spaces when parsing
with space as the delimiter
system prompt: ok
type of division: floored
values returned after arithmetic overflow: 2’'s complement wraparound for
addition/subtraction, unspecified
for multiplication/division
maximum size of a parsed string: 255
size of buffer aWORD 80
values ofSTATEwhen true: -1

11

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

whether the current definition can be found aR@ES> *
source and format of display BEE *

Number conversion is case-insensitive; e.g., “a” and “A” are equivalent within hexadecimal numbers.

Thedata stackand return stack shall each be at least 64 entries deep.

2.5 Hardware assumptions

— Processor.Open Firmware requires at least one instruction-set processor for executtmn fahctions de-
scribed inthis document. While thisnodel can apply to systemsvith more than one processorthe Open
Firmware execution model assumes a sirtgiead ofexecution on one processdihe processor may have
associatednemory management units (MMsid caches.

— Memory. Open Firmware requires some amount of random-access memory (RAM) for stodagge aficpro-
gram extensions. The firmware prograitself is storedin, andexecutes fromeither ROM, RAM, or some
arbitrary combination of the two.

— Console devicesThe optional Open Firmware interactieemmand interpreterequires a character input
device and a character output device for use as the console.

— Timer device. Certain Open Firmware functiobenefit fromthe presence of an optional tingavice capable
of interrupting theprocessor at periodic intervals. #hmer resolution of at least 1 ms is preferred, but a
resolution as coarse as 100 ms is still useful.

— Nonvolatile memory. Certain optional Open Firmwafeatures requirasomeamount(typically between 1 and
8 Kbytes) of nonvolatile memoryExamples of nonvolatile storagegevices are battery-backed memory,
electrically erasable read-only memory (EEPROM), and reserved space on disk drives.

— Boot device.The booting process requires a device capable of supghgéuaient programto Open Firmware.
Examples of boot devices are disk drives, ROM, network interfaces, and serial communication links.

— Other devices.In addition to thedevices listedibove,Open Firmwarenay supporbther types of devices, but
they are not generally required for basic operation.

— Built-in vs.plug-in devices.The devices that are used by Open Firmware may, in most cases, bbeither
devicesor plug-in devicesThefirmware device driverdor built-in devicesareusually included apermanent
parts of thesystem’s Operfrirmware implementation. The drivefsr plug-in devicesaretypically stored on
the device itself, and thus are automatically installed and removed when the device is installed and removed.

12

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

3. Internal structure

The functionsprovided through thevarious external interfacegre basedon, anddescribed in term®f, the
following elements:

— Forth programming language. Basic software execution model.

— Forth dictionary. Globally available functions.

— Device tree.System hardware description and drivers.

— Configuration variables. Storage for the user’s configuration choices.

3.1 Forth dictionary

The Forth dictionary is a set Bbrth words(software procedures in the Forth programming langu&est of the
functions available through the usamd device interfacegorrespond directly to words ithe Forth dictionary.
Other words inthe dictionarymay serve asnternal supportfunctions to assist in the implementation of the
specified interface functions.

Some or all of the words may have externally visible names, allowing them to be execoadebfrom any of the
three external interfaces.

The Forth dictionary is extensible; a usedevice drivermay add new Forth words to the dictionary.

Generally, wordsvithin the Forth dictionary arglobally available; they may be called directly, from any context,
at any time. This is in contrast package methodslescribed later), whose calling rules are more restricted.

3.2 Device tree

The device trees a hierarchical data structutteat describeghe systemhardware describes user configuration
choices, containfirmware device driversfor hardwaredevices,and containsupport routines for use by those
drivers.

The device tree’sstructure mimics the organization of theystem hardware, viewed as ahierarchy of
interconnected buses and their attached devices.

The devicetree consists of a set dévice nodeshat areinterconnected to form a tree. An individwEvice node
represents either a hardware bus, a hardware device, or a set of interrelated software procedures.

3.2.1 Device nodes

The root of thalevice treas a node representing the machine’s main physical address bus.

Eachdevice nodenay havechildren (otherdevice nodes directly subordinateity properties(externally visible
data structures describing the nadte itsassociated devicenethods(software procedurethat may be used to

access the device), addta (initial values ofprivate dataused by the methods).

Device nodes with children are called hierarchizades. A node’parentis the node to which it is attached in the
device tree. Theoot nodehas no parent. Device nodes without children are cldbgfchodes

A node with childrerusually represents a basid itsassociated controlling hardwargachbus is assumed to
define a physical address space; each device connedtet boshas a distincphysical address withithat space,
uniquely distinguishing the particular device from ottlevices orthatbus.The form of a physical addresshigs-
specific. The children of é&us nodeare distinguisheffom one another witkoftware representations thfe same

13

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

physical addressdbhat thebus device uses wistinguish attachedevices. Open Firmware uses several different
representations of addresses with similar meanings but different forms:

— text representation.The human-readable form of a physical address. The format is bus-dependent. For
example, soméuses use a comma-separatistt of numbers represented as ASCII text in hexadecimal
notation.

— stack representation.Used topass arguments @ndresults fromForth words This form usually consists of
one or more binary numbers on tfeta stack

— property-encoded representationUsed tocommunicate wittclient programsthroughproperty values.This
form usually consists of a sequence of binary numbers stored within an array of bytes.

The forms of these representations differ, Ibeir meanings are the sambey represenphysical addresses
within a bus’sphysical address space

The details of these different representatidiffer from bus to busgepending on the addressing characteristics of
the individual bus. Specifications of Open Firmware address representations for sstesrdhrdbuses are
specified in supplements to this document (see the IEEE P1275.x documents in 2.1).

The devicetree initially contains nodes for a compussistem’sbuilt-in devices Additional nodes foplug-in
devicesare added later by the probing process.

Some nodes ithe devicetree do not represent physiaivices. These system nodesused instead for various
generalfirmware purposes. System nodes ot have physical address@heir node namesave adriver name
field but not aunit addresdield.

3.2.1.1 Node names
Each node in thdevice treds identified by anxode nameising the following notation:
driver-name@unit-address:device-arguments

Thedriver namefield is a sequence of between ared 31letters, digitsand punctuation charactefrom the set

“, ._+-". Uppercaseand lowercasecharacters are distinct. By convention, this name includes the name of the
device’s manufacturer and the device’s model name separated hy(8€e the definition offame” in annex A.)
Inclusion of the manufacturer name within driver namespeciallyimportantfor devicesintended to plug into
standardbuses, ashis minimizes the risk of accidental nadlisions. It is somewhat lessiportantfor devices

that are permanently attached to a particular system.

If the manufacturer name component is omitted (i.e., there is naithin the driver name), the convention is to
assumehat the manufacturer name is g@me ashat of the nearestncestor nodepérent node or grandparent
node, etc.) that has an explicit manufacturer name component.

The unit addresdield is the text representation of tiphysical addres®f the devicewithin the addresspace
defined by its parent node. The form of the text representation is bus-dependent.

The device argument§ield is a sequence of printable characters othan 77, “: ", and “@. Uppercase and
lowercasecharacters are distinct. The length is arbitrary. @aeicearguments field is interpreted biye driver
andtypically represents additionaleviceinformation, such as partition name motocol. The devicearguments
field and its preceding:*” may be omitted when specifying a nag@me, as itloesnot serve to identifythe device
node instead, it is passed tbat node’'sopen method ifthat driver isopened. By convention, “ is used to
separate subfields within the device arguments field.

14

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

3.2.1.2 Path names

A particular node is uniquely identified by describing its position indince treeby completely specifying the
pathfrom theroot nodethrough all intermediateodes tothe node in question. The textual representation of a
such a path is calleddevice pathDevice paths are composed as follows:

/node-nameO/node-namel/ ... /node-nameN

When Open Firmware is searchifay a particular nodeand either tha&river nameor @unit-addresgortion of
thenode namés not given, Open Firmware shall arbitrarily choose a node matching the portion that is present.

The complete, unambiguous devipath of adevice noddists the node names afl devices inthe pathfrom the
root of the tree to the desirelgvice. A devicepath isrepresented as a list of node names separated’be.9.,
“/sbus@1,f8000000/SUNW,esp@0,800000/sd@1,0

The root of the tree is threot node which is not named explicitly but is indicated by a leadihy The rootnhode
itself is named by the pathnamfe’

Theuser interfaceand theclient interfaceboth use pathnames to identify particular device nodes.
3.2.1.3 Aliases

A device alias or simplyalias, is a shorthand representation adevice path For example, the aliadisk may
represent thelevicepath Ysbus@1,f8000000/esp@0,400000/sd@3,0:b ". An alias represents an entire
devicepath, but that pathneed not refer to keaf node Each implementatiomay have aanumber of predefined

aliases for devices commorilystalled on that machinélsers may createnodify, and examine aliases with the
devalias command. User-defined aliases are lost after a system reset or power cycle, but the effect of a persistent
aliasmay by achieved bgtoring thedevalias command in thescript, either manually or with thavalias

command. The termdevice-specifiedenotes atring that is either devicepath, an alias, or an alias thafers to

a nonteaf nodefollowed by additionahode-name&omponents.

An alias name is asequence of printable characters otthem 77, “\'”, “:” *[* “]”, and “@. An alias
value is a device path.

3.2.2 Packages

A packageis the combination of device node’s propertiemjethods andprivate data In most caseghe terms
packageanddevice nodenay be used interchangeablihe termdevice node is typically usedhen the emphasis
is on the node aspart of thedevice tregthe term package issed with emphasis dhe use ofthe node’s driver
methods. The text strintpatidentifies a device node is calledlavice pathThe numerical identifier of device
node is called phandle

The “type” of a package is the liahdinterface description of its externallysible methods together witts prop-
erties. Several distinct packagaayimplement the same interface. For example, theag be two displagevice
driver packages, each implementing the standisglay device interfacebut for different types of displdyard-
ware. From a usage standpoint, thve packagesre equivalenteventhough their internal implementations may
differ widely.

3.2.2.1 Properties

Properties describe characteristics tiardwaredevices, softwareand user choices. Propertiewe externally
visible; bothfirmware procedures andient programsmay inspect and perhaps modify properties.

Each property consists ofpaoperty namend its associatgatoperty value

15

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

3.2.2.1.1 Property names

The property namds a human-readable text string consistingmé to thirty-one printable charactePyoperty
names shall not contain uppercase characters or the charactens™ “: 7, “[“, “] " and “@.

Propertiesareaccessed bgame.Given astring, it ispossible to determine whetherrwot there is a property with
that name in a particulaevice nodeand if so, its value.

This standardiefines some propertyames and the meanings of theatues; properties with namésat are not
defined by this standard may be used to convey other information at the developer’s discretion.

Property names beginning with the charactérdre reserved for use by future revisions of this standard.

Eachdevice nodénas at leasbne property, whose propentyame is the stringrfame”, and whose value is a text
string naming thelevice.Thevalue ofthis “name” property isthe driver namecomponent of theode namehat
identifies the device in device pathnames.

3.2.2.1.2 Property values

Theproperty values an array of zero or mobgtescontaining the informatioassociated wittthat property The
meaning of those bytes depends on the particular property.

This standardiefinesstandardvays toencode various types offormation in property valubyte arrays, angro-
cedures for performinthe encodingand decoding process.he encoding technique is callpdoperty encoding
Property encodingasprovisions for encoding testrings, integerdyytearrays, and variougerived typeshat are
composed by concatenation of those primary data types.

The property-encoding format is independent of hardvgite order and alignmentcharacteristics. Thencoded
byte order is well-definedin particular, it isbig endian. Individual items are concatenatedftsm composed
types without any “padding” for alignment reasons.

A property may have aull value, i.e., abyte array of length zero. Such propertiasually convey true/false
information. The presence of the property signifieg, and its absence signifitase

The property encoding rules are as follows:

— byte array. An array ofbytes is encoded in property valuebyte array by storing thsuccessive bytes of the
input array into successive locations in the property value byte array.

— 32-bit integer. A 32-bit integer isencodednto a property valubytearray by storing the most significalmjyte
at the next available addredsllowed (at address+1) by thieigh middle byte, the low middle byte, and (at
address+3) the least significant byte.

— text string. A text string consisting af printable characters is encoded into a property value byte array by stor-
ing then characters atuccessive locations the arrayfollowed by anull byte (ofbinary value zero) denoting
the end of the string.

— composite valuesA succession of individuatlata items isencodedinto a property valuebyte array by
encoding the individual items isequence. Nalignment or padding is performed (i.e., the items are
“packed”); each successive item immediately follows its predecessor.

This standardpecifies functions foperforming thesand othederived encodingandfor performingthe inverse
decoding operations. The prograimat creates a propertgnd the program thaises it must agree on what
information is contained in the value of a property of a particudeme and on therder in whichthatinformation
appears. Theroperty encodingand decoding functions do natescribethe meaning of the informatiorthey
simply allow it to be expressed in an ISA-independent manner.

16

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

3.2.2.2 Methods

Methodsare namedoftware procedurgbatcontrol hardwar@levices or providether servicesEachdevice node
may have zero or more methods.

The name space for a given device node’s methods is distinct from the name spguepéites

Some device node methods are externally visible in that they may be invoked by software entitiethe diesiitze
node. Other methods are for internal use only and may be invoked only by other methods of the same device node.

The list of methoddor a particular device node forms &orth wordlist . Each method is &orth word.
Arguments to andesults fromdevice methodarepassed othe Forth stack. The method lists differentdevice
nodesare disjointfrom one another. Although differedevice nodes oftenontain methods with identical names
(for example, many nodes contaisedftest method), those individual methods are distinct.

In generalpefore apackage’smethods can be used, the package musipbeed thus creating amstanceof the
packageHowever, it is possible to defimaethodghat can beised without openintheir packages; such methods
are calledstatic methodsA static method can not refer my instance-specifidata, nor can iexecute any
function thatimplicitly refers to thecurrent instance A static method can call another static metraod it can
call any method in a package that has been opened.

This standard defines several methods with predefined meanings as given in this clause.

3.2.2.3 Private data

Private datais used bypackage methodt maintain internal informationUnlike properties which can be
accessed by external software, private data can not be directly accessed from outside the package;aatess any
to package data is mediated by the package’s methods. Private data can be instance-specific or static.
3.2.2.3.1 Instance-specific data

When apackageis opened memory is allocated fats instance-specifidata. The contents dfiat memorycan be
changed without affecting any other instanceshat package. Instance-specific datan be either initialized or
zero-filled.

A package containiitial values for its instance-specifitata. When a packagedpened, thesmitial values are
copied into the corresponding locations within the memory allocataddbinstanceSubsequent modifications of

the instance’s initialized data do not affect the initial values contained within the package.

TheForth wordsvariable , value , anddefer , in conjunction withinstance , and theif-Codeequivalents,
create initialized data items.

When a package is opened, the locations withimrtemory allocated fothat instanceorresponding to theero-
filled data are set to zero.

The Forthword buffer: , in conjunction withinstance , and theirFCode equivalents, creates zero-filldata
items.

3.2.2.3.2 Static data
Static datais shared among all instances of a particplrkageandpersists even when rinstance exists. Static

data may thus beused to communicate between differémstances of the same package. This includes two
instances that exist simultaneously as well as two instances that exist at different times.

17

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

3.2.2.4 Package creation

Eachpackageis adevice noden thedevice tree Packages implementirdgvice driversarelocated inthe device

tree as children of the device node for the bus on which the device resides. Pangbggasnting utility functions
not associated with angpecific deviceare usually located ashildren of the/packages device node, which
exists as a place to put those utility packages.

New packagesare created during the probing portion of Hystemstart-up sequenc&he process otreating a
new package involves the following:

a) Creating anew “empty” device node ahe appropriate location in thievicetree and making it theactive
package

b) Interpreting ar-Code programnto define itsmethodsandpropertiesand allocating storage for its data.

¢) Finishing the package to “freeze” the initial values of its instance-specific data.

At any given time, if there is an active package,
— Newly created-orth wordsbecome methods of the active package.

— Newly created Forth variables, valudsiffersanddefer words may defineither static or instance-specific
data areas. The default is static. Instance-specific data is allocated if the defanthgs preceded by the
instance modifier.

— If there is acurrent instancenewly created properties are added to the package whichthat instance was
created; otherwise, newly created properties are added to the active package.

— The process of searching for Forth words considers first the methods of the active package, followed by globally
visible words.

If there is not an active package:

— Newly created Forth words are globally visible (i.e., not specific to any package).

— Newly created Forth variables, valudsiffers,anddefer words allocate global storage (not associated with
any particular package).

— If there is a current instanceewly created properties are added to the package whichthat instance was
created; otherwise, new properties cannot be created.

— The process of searching for Forth words considers only globally visible words.

There isalways an active packagéhen an FCodprogram is being evaluated. Whemew package is created by
probing an FCoderogram, thenew package is placed the devicetree as a child of the hierarchiadgvicethat
performs the probing. (In general, hierarchical devices are responsible for knowing how to probe their children.)

3.2.3 Package instances

In most cases, in order to uspackage the package must lopenedthus creating amstanceof thatpackage. A

package instanceonsists of aopy ofthe package’private data copies of anyarguments thatvere provided

when the instance was created, and linkage information that allows the package instance to locate an instance of its
parent device’s package. The numerical identifier of an instance is calleanaihe In general, when a package is
opened, all of the packages in the path frondindce tredo that package are opened also.

Several instances dhe same packagmay be in use simultaneously, eagith its own separateopy of the
package’s private data and instance arguments.

By analogy to traditional operatingystems, a package $milar to a program residing in a disk filand an

instance is similar to a running “process” or “task”. Similar tovtlag that multiple independenrocesses may be
created from a single program, multiple independent instances may be created from a single package.

18

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

3.2.3.1 Instance chains

A packageis openedfrom adevice path(or equivalendevice alia} that specifiesthe pathfrom the root of the
device tredo thedevice in questionEach component dghat path, beginning at theot, is opened, creating an
instancefor eachdevice inthe path. The instances are linked togethethabeachpackage instancenay locate
the instance of its parent.

When an instance is no longer needed (e program thabpened a package decidést it will no longer need
the functionprovided bythat package), the instaneray beclosed thus freeing thenemory used byts private
data and perhapsleactivating devices controlled hijat package or its parents. An instancay be closed
individually or the entire instanaghain to which itbelongs may be closed. the latter case, the instances in the
chain are closed in the order opposite to the order in which they were opened. In other words, an ickiaede is
and then its parent instance is closed, and then its parent’s parent, and so on.

3.2.3.2 Instance methods

Beforeusing apackage methqdn most casethe package must first lmpened thus creating aimstance The
instance is represented by iiandle a numerical valuéhatrefers to a particular instance. At any given time, one
instance, at mostpay bethe current instance The private dataof the current instance &ccessiblethe private
data of other instances is not.

In order to use a package method, its instance must be made current.

To call a method from another method within the same package, no special action need be taken; since the
appropriate instance must already be the current instanti®e calling method toun, thecalled method may be
invoked directly, without changing the current instance.

To call a package method from ttautside” (i.e., fromsome execution contegtherthan theinstance containing
the method in question), a different approach is used. The caller identifies both the method to bad&tledn-
stancethat is to be currerfor the duration of thamethod’s execution. Them@e various commands fazalling
methods, differing in théorms of methodand instancedentification. In general, such a commasaves the
ihandle of the current instance by pushing it on the return staelkes the called instance the current instance,
executeghe methodand therpopsthe savedihandlefrom thereturn stack, restoring the current instancéhtd
value.

The caller must know the ihandle of the instance corresponding to the method to be called. Tiverecanenon
ways to acquire this knowledge:

— The callermay have openethe packagevhosemethod is to be called. Th&rocess of opening a package
returns the resulting ihandle, which the calleay save forater use incalling the ihandle’sassociated
methods.

— The package to be calleday bethe parent of the calling instance. As mentioned in 3.2.3.1, each instance
automatically knows the ihandle of its parent.

A static methoctan beexecuted at angime, regardless of whether or not its package is open. It careated
directly by other methodwithin the same package, or #gecution token may be passecei@cute or catch

or stored in alefer word forlater execution. Therarevariousways todetermine its execution token in various
circumstances, for examplnd-method or[]

19

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

3.3 Configuration memory

Configuration memory storéaformation thataffectsthe behavior of various Open Firmware functions according
to the user’s preferences. Ttigoicesarestored in some form of nonvolatile memory, such as electrically erasable
PROM or battery-backed RAM.

Open Firmware provides functions for settihg configuratiormemorythrough theuser interfaceand theclient
interface

The precise layout othe data stored in configurationemory isnot exposedhroughany of the Open Firmware
external interfaces. Configuratiomemory fieldsare accessed byame, as withdevice-node propertiesThis
facilitates the addition afew fieldsand thedeletion of fieldghat are no longemeeded, since externsdftware is
unaware of precise storage locations and internal storage formats.

331 Configuration variables

Configuration variablesare predefined configuratianemory choiceshat affect Open Firmware in well-defined
ways.

The list of configuration variables varies fraystem to systensuch choices often includbe device from which
to boot the operating system, the device to use as the console, and the amount of memory to be tested.

For each configuration variable supported by a particular implementation, Open Firmagr@ainsboth the
default value ofhe variabletypically stored in ROMand the currentalue, stored in configuration memory. The
default valuesare useful forrestoring the settings to thdwmctory defaultswhich may be donesither upon user
command or automatically, if thBrmware determinesthat the contents of configuration memory habeen
corrupted.

3.3.2 Custom start-up script

The custom start-ugcript is a portion of configuration memotigat can contain an arbitranser-supplied Forth
language program. That program can be executed automaticallytasf the Open Firmware start-spquence. It
can beused for a variety of purposéscluding work-arounds or patchésr firmware or device driverbugs, user
enhancements, or customizations beyond the capabilities obnifiguration variables

The custom start-up scripiccupiesthe portion of configuratiomemorythat is notdedicated to other purposes
such as configuration variables. Its length eary from zero up téhe amount of available configuratiomemory.
The custom start-up script can execute essentially any of the commands that are preseseinritegface

The contents of theustom start-ugcript can beset eitheithrough theclient interfaceor with the text editothat
is an optional part of the user interface.

3.4 Standard property names
These standargdroperty namespply toall device nodegegardless of typearticulartypes of devicebave addi-

tional propertiesspecified in subsequent sections. Most of the following properties are optipaakageincludes
the property to declare a particular characteristic if desired. fdé’ property is required for all packages.

20

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Theproperty valualata formats for these properties are described in their glossary entries in annex A.

“name”’ Standardproperty nameo define the name of the package.
“reg” Standardproperty nameo define the package’s registers.
“device_type " Standardproperty nameo specify the implemented interface.
“interrupts " Standardproperty nameo define the interrupts used.
“model ” Standardproperty nameo define a manufacturer’'s model number.
“address ” Standardproperty nameo define large virtual address region(s).
“compatible " Standardproperty nameo define alternatertame” property

values.
“status " Standardproperty nameo indicate the device’s operational status.

21

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

3.5 Standard system nodes
Standard system nodes are as follows:

/

This is theroot node It is the root of thelevice tregall other nodes descend from it. Its lists describe basic
machinepropertiessuch as model, revision, and manufacturing date phlgsical address spaadefined by

this node is the main physical address bus of the system. The methods of this node provide mapping services
for the main system bus. On a uniprocessor machine this node may also contain properties describing the
CPU. On a multiprocessor machine, each CPU would have its own node below the root node.

Property name Encoding | Value
name string Name of gstem’s manufacturer and model numbeg,,e.
“ABC,mat750 ".
/aliases

The property list of this node is the devalias list. For each property in this nogeppleety names the name
of an alias, and the property value is the alias’s expansion, encoded asneitdé-string "

Property name Encoding | Value
name string “aliases "
/openprom

Describes the Open Firmware.
The standard properties of this node are as follows. Additional system-dependent properties may also be

present.

Property name Encoding | Value

name string “openprom ”

model string Describes manufacturer and revision level of firmware. See
model property.

relative-addressing (none) Presence of thigoperty indicates that the @&n Firmware
supports bus-relativghysical addressm(earl precursors to
Open Firmware used a different addregsscheme).

/options

The properties of this node are the systernisfiguration variable. The property names are the names of
those configuration variables, and fiteperty valuesire the output text representations (see 7.4.4.1) of those
configuration variables. Client programs may examine and change the values of these properties with
getprop andsetprop , thus examining and changing the values of the corresponding configuration
variables. Similarly, users may examine and change thenpviittenv |, setenv , and$setenv .

Property name Encoding | Value
name string “options

”

22

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

/chosen
Has properties describing parameters chosen or specified at runtime.

Property name Encoding | Value

name string “chosen ”

stdin int lhandlefor the console iput device. Ma be used with theead
client intefacefunction to read characters from that device.

stdout int Ihandlefor the console optt device. Mg be used with therrite
client interface function to write characters to that device.

bootpath string Thedevicepath for the last boot device. Clieptograms m# use

this property to locate the device thievere booted from. This
property may be modified to select a different boot device.
bootargs string The aguments to the last boot command. Tirigperty may be
modified in order to alter theptions to the boot command, whig
options my be intepreted ly the (pen Firmware or the client

>

program(s).

memory int lhandlefor thepackage that describes the allocation status of
physical memoy. See 3.7.6.

mmu int Ihandlefor thepackage, if ary, that the firmware is curremtl

using for memoy mangement. Thigproperty shall not beoresent
if there is no sucpackaje. See 3.6.5.

/packages

This node may have several children, but instead of describing a physical bus, this node serves as a parent
node forsupport packagaodes (both standard support packages and system-specific ones). The children of
this node are general-purpose support packages not attached to any particular hardware device. The physical
address space defined by this hierarchical node is the trivial one: all addresses are the same (0,0). Its children
are distinguished by name alone.

Property name Encoding | Value
name string “packages

”

3.6 Standard packages

A standarcpackagemplements a defined set pifopertiesandmethodsthus providing aervicethatmay be used
by otherfirmware components. There are three kinds of standard packages: staystardhodes, devices types,
and standardupport package.

— Standard system nodesThe purpose of astandardsystem node is toontainsystem-leveinformation. Most
standardsystem nodesontainonly propertieswith no executable methodBhe/packages standardsystem
node contains the standard support packages (described later).

— Device type packageslhe purpose of a typical package is to providieeice driverfor aparticular hardware
device. Astandarddevice type is a specification ftlie interface presented by packageshat type, sothat
other firmware components definedthys standard cause such packages in a predictaieuseful fashion.
Typically, some such packagase preconfigured into lbootfirmware system bythe manufacturer, anothers
are added later by evaluatiR@€ode programsThe preconfigured packages corresponiouiti-in devicesand
thosethat areadded later correspond ptug-in devicesThe particular set of propertiemd methods depends
on the package’device typeThis standardlefines several device typdbeir correspondingets of properties
and methods,and theways in which packages implementing thodevices typesre used by other Open
Firmware components. A particular firmwasgstem may have severdistinct packages implementing a
particular device type. For example, a system might have several different kinds of disk controllers, each with a
package implementing the disk device type.

— Standard support packages.The purpose of astandard support package is to assist in the implementation of
packages aftandarddevice typesStandard support packaga® preconfigured into theootfirmware system
residing (with theexception ofthe display driver support packages) @sldren of the/packages node. A
standard support packagessmewhat analogous to a “subroutine libraiiyfiis standaraiefines severadtan-
dard supporpackages, each with itavn defined set of propertiesdmethods. Typically, @articularsystem

23

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

hasexactly one of each such package (since support pac&egjesated byname in the “flat” namepace of
the/packages node, there is no way to find or use more than one of each).

This clause lists severatandarddevice typesndseveralstandard suppompackagesand describes how they are
used. The definitivespecification of those device typaad standardupport packages is given in tgssary in
annex A. Thiglause also describes a template for a set of methatlerecommonly used by device types corre-
sponding to particulalbusesThe individual methods ithatsetaredefined bythis standard (in annex Iput the
definition of particular standardevice typeqgroupings of methodghat include those methods is left to other
related standards, such as bus-specific supplements.

3.6.1 Parent methods

When apackageis openedwith open-dev , all of the packages in tipathfrom the root of thalevice tredo that
package are opened also, resulting itngtancechain. Similarly, when that instance chairtlissed all thepack-
agesthat it represents arelosed.This impliesthat any device nodewith children that can bepened with
open-dev must itself havepen andclose methodsotherwise, it would not be possible to open those children.

This standarexplicitly defines one such nodeheroot node.Typical systems havadditional such nodesisually
corresponding to standard expansimsesThe details of thosaodesare thesubject ofrelated standards, or may
be vendor-dependent for proprietary buses, but those nodes muspkavandclose methods.

The children of thépackages nodearesupport packagesyhich areopened withopen-package instead of
open-dev . Sinceopen-package doesnot open the entirpath, the/packages node need not havepen
andclose methods.

In many cases, thessppen andclose methods can beery simple; often justeturningtrue with no other
action foropen anddoing nothingfor close . Such simple implementations are appropriaté'hardwired” bus
hardware where the bus adapter hardware has little or no software-visible “state”.

A very similar requirement is imposed by the semantics of pathname resolution. In order to manchatthéress
component of aode namgthe parent'slecode-unit method is executed, transformitige text representation
of the unit address into its numerical form. This implies the feregldecode-unit method in any device node
that defines @hysical address spader its children. In mossystemsthe nodes to whichthis requiremenapplies
are the same as tlomes to whichthe open andclose requirement applieddowever, it is conceivabléhat a
systemmight have a node with a fixed set dfildren that are distinguished by nawmy without needing any
form of physical address space. Such a node would not ressmbde-unit method.

open (-- okay?) Prepare this device for subsequent use.
close () Close this previouslgpen ed device.
decode-unit (‘addr len -- phys.lo ... phys.hi) Convert text unit-string to physical address.
encode-unit (phys.lo ... phys.hi -- unit-str unit-len) Convert physical address to text unit-string.

3.6.2 Generic methods

Any packageregardless of itdevice typgcan implement gelftest methodso that thauser interfacetest
command can besed to cause its correspondaeyice to be testedhis standardmposes no requirement on the
existence of zelftest method in any package, but customer support considerations often demand it.

selftest (-- ?error?) Perform self-test for this device.

Thereset method can be implemented to put tlewice in a quiescestate. Theeset method is noinvoked
by anystandard Open Firmware functiorisjt may be explicitly executed fgrarticular “problem”devices in
particular Open Firmware implementations.

reset (--) Put this device into a quiescent state.

24

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

3.6.3 Package I/0 model

Most input, output,and storage devicesre accessedwith a byte-oriented “read/write/seek” interface. 1/O
operations arepecified by astartingvirtual addressand abyte count,and the implementatiothides” device-
specific details likeblock sizesandrecords. A particuladevice onlyimplements the set of operatiotisat make
sense foiit; for example,the read methodmight not beapplicable to a@rame-buffer deviceand thewrite
method might not be applicable to a CD-ROM.

The client interfaceentriesread , write , andseek , described in clause @re essentially direct interfaces to
similarly named methods of standgralckages

3.6.4 Expansion bus device class template

A memory-mapped bus logically extertti® processor's memory address space to inctbdeleviceson thatbus,
allowing theuse of processor loaahd storecycles todirectly address those devic8he detailsvary from bus to

bus. This standarddoesnot specify the adaptation of Open Firmware to any particudas, but other related
standards do so specify (see 2.1). This subclause lists ansethmfdghat deal with requirements common to most
memory-mapped buseghis subclause isntended as a suggeststarting pointfor the development of complete
sets of methods fgparticularbuses; also seeelated standards, such as IEEE Std 1275.2-1994. The methods
provide mapping services for establishinthe correspondence between processgitual and device physical
addressesallocation of DMA memory, and probing to locgtieg-in devices

map-in (' phys.lo ... phys.hi size -- virt) Map the specified region; return a virtual address.
map-out (virt size --) Destroy mapping from previomsp-in .

dma-alloc (... size --virt) Allocate a memory region for later use.

dma-free (virt size --) Free memory allocated wilma-alloc

dma-map-in (... virt size cacheable? -- devaddr) Convert virtual address to device bus DMA address.
dma-map-out (virt devaddr size --) Free DMA mapping set up vdtha-map-in .

dma-sync (virt devaddr size --) Synchronize (flush) DMA memory caches.

probe-self (arg-str arg-len reg-str reg-len fcode-str fcode-len --) Evaluate FCode as a child of this node.

The following properties are specific to this clasdedfice node

”

“ranges Standardproperty nameo define a device’s physical address.
“#address-cells " Standardproperty nameo define the package’s address format.
“#size-cells " Standardproperty nameo define the package’s addreszeformat.

3.6.5 Memory management device class template

An MMU is a devicethat performs address translatidretween a CPU'wirtual addressesand thephysical
addresse®f some bus, typicallthe bus represented lifie root node In general, the details ab®th processor-
specificandbus-specificThis standaradloesnot specifythe adaptation of Open Firmware to any partictdU,

but other related standards may so specify (see 2.1). This standard does not require the presence of an MMU.

This subclause lists a set afethodsthat deal with requirements common to mddMUs. This subclause is
intended as a suggestsidrting pointfor the development of complete sets of methodsp@rticularMMUs. The
methods provide services for fine-grained contrahef allocationand mapping of virtuahddresses, particularly
intended for use bylient programsthrough thecall-method client interfaceservice (see alsthe ‘mmu
property of the /chosen node). In general, these of these methods makes a cligrdigramsystem-specific;
nevertheless, thegreuseful in some circumstancdde arguments anesults showrare intended as guidelines;
particular MMUs might require additional arguments or changes to the arguments shown.

The presence of aMMU node doesot imply that theOpen Firmware is necessarily using virtual-to-physical
address translation hardware.

25

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

The following methods, defined in the glossary, are recommended for pdkhges

claim ([virt] size align -- base) Allocate (claim) addressable resource

release (virt size --) Free (release) addressable resource.

map (phys.lo ... phys.hi virt size mode --) Create address translation

unmap (virt size --) Invalidate existing address translation.

modify (virt size mode --) Modify existing address translation.

translate (virt -- false | phys.lo ... phys.hi mode true) Translate virtual address to physical address.

Additional requirements for thedaim andrelease methods:
— The address formatjrt, is a single-celirtual address

— The allocation lengttsize is a single cell.

— The allocated resource is a region of virtual address space.

The following properties are recommended for MMU packages:

“available " The property values are as defined for the standag * format, with single-cell virtual
addresses. The regions of virtual address space denote the virtual address space that is currently
unallocated by the Open Firmware and is available for use by client programs.

“existing " The value of this property defines the regions of virtual address space managed by the MMU in
whose package this property is defined without regard to whether or not these regions are
currently in use. The encodingswit andlen are MMU-specific.

NOTE—Freeing virtual address space does not necessarilyafmgassociated physical resource. The correct sequence of
operations for freeing mappeademory is tofirst useunmap, thusdestroyingthe translation. Then thghysical memory and
virtual address space can be freed withréhease methods of the respective nodes.

3.7 Standard device types

Thedevice typef a particulapackageidentifies the set giropertiesandmethodshat thepackage is expected to
implement. Any particular package may also implement an arbitrary number of propediesthods in addition
to those implied by itslevice typeThe device type of anodeis given by theroperty value(of typestring) of its
“device_type " property.

It is notnecessary for evenyode to have adevice type 7 property. If a particuladeviceis notuseful for any
Open Firmware function (e.g., booting, console, probihgh itneed not have device type. For example, Open
Firmware has no use for a FAX modem, so sudevice doesot need alevice type. Howevethere is no restric-
tion preventing it from having device type stong as itsdevice type isiot the same as one of tendardypes
(i.e., a device should not claim to be something that it is not).

Open Firmware supplies a set sthndardsupport packageshat assist in the implementation of methods for
standarddevice types irterms of*lower-level” methodsthat more closely match the native capabilities sbme
common types dhardwaredevices. For exampléhe “deblocker " support package implements a byte-oriented
read method in terms of record-oriented operations on a dapie. Aparticular implementation of a standard
package for a given device type is allowed, but not required, to use the provided support packages.

The following standarddevice typesare defined by Open Firmware. Subsequent subclauses discusslévise
types more extensively.

“device_type " value Example Typical use

“display " bit-mapped frame-buffer console quit

“block ” hard disk booting

“byte ” tape bootirg

“network ” Ethernet interface bootirg

“serial " asynchronous serial line consolepit and oyput

26

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Related standards will define additional standard device types. For example, standards specifying the application of
Open Firmware to particular expansion buses will define standard device types for those buses (see 2.1).

3.71 “display " devices

“display " devicesare user outpudevicesthat candisplay text, perform cursor-positioning operations controlled
by embedded ANSI X3.64 escape sequenard,possibly display bit-mapped logoExamples of display ”
devicesinclude bit-mappedrame buffers graphics displaysand character-mapped displays. Open Firmware
typically uses display devices for console output.

There areseveralstandardsupport packaget assist in the implementation of the standafidplay " device
methods. Théerminal emulatosupport package processes a stream of textemitbedded ANSI X3.64 escape se-
guences, converting it to a sequence of calls to primitive display operations sdciwasharacter . For
certaintypes of bit-mappedrame buffersithe ‘b8 ” support package implements those primitive operations.
Finally, the font ” support package provides a default bit-mapped font suitable for useheitfb8 ” support
package.

The “display " glossary entry(annex A)specifiesthe set of methodfr this device typeFor reference, those
methods are listed as follows:

open (-- okay?) Prepare this device for subsequent use.

close () Close this previouslgpen ed device.

write (addr len -- actual) Write memory buffer to device, return actual byte count.
draw-logo (line# addr width height --) Calttraw-logo routine for this device.

restore (--) Restore device to useable state after unexpected reset.

The followingpropertyis specific to this device type:

character-set Standardgropertynameto specify the character set for this
device.

3.7.2 “block ” devices

“block ” devicesare nonvolatile mass storadevices whosenformation can baccessed in angrder. Examples
of “block " devicesinclude hard disks, floppy disks,and CD-ROMs. Open Firmwargypically uses block ”
devices for booting.

Although standargackageof the ‘block ” device typeresent a byte-oriented interfacethie rest of thesystem,
the associated hardwamevicesare usually block-orientedj.e., the device readsand writes data in“blocks”
(groups of, for example512 or 2048bytes). The standard deblocker " support packageassists in the
presentation of a byte-oriented interface “on éfpan underlying block-oriented interface, implementintager
of buffering that “hides” the underlying block length.

“block ” devices are often subdividéwnto several logical “partitions”, as defined bylisk label—a special block,
usually the first one—containing informatioabout the device. The driver isresponsible for appropriately
interpreting a disk label. The drivenay usethe standard disk-label " support package if idoes not
implement a specialized label. Thaisk-label " support package interprets a system-dependent label format.
Since thedisk-booting protocol usually depends upite label format, thestandard disk-label " support
package also implementdaad methodfor the corresponding boot protocol.

The 'block ” glossary entry(annex A)specifiesthe set of method®r this device type. For reference, those
methods are listed as follows:

open (-- okay?) Prepare this device for subsequent use.
close () Close this previouslgpen ed device.

27

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
read (addr len -- actual) Read device into memory buffer, return actual byte count.
(continued)

write (‘addr len -- actual) Write memory buffer to device, return actual byte count.
seek (pos.lo pos.hi -- status) Set device position for neatl orwrite

load (‘addr -- size) Load a client program from device to memory.

3.7.3 “byte ” devices

“byte ” devicesaresequential-access mass storage devices, typically, tape devices. Open Fiypiaalie uses
byte devices for booting.

Although standargackageof the ‘byte " device typeresent a byte-oriented interfacethe rest of thesystem,
the associated hardware devicesum@ally record-oriented;e., thedevicereadsandwrites data in “recordston-
taining more than one byte.The recordamay beeither fixed length (all records must be the same length) or
variable length (the record lengtiay vary from record to record). Tapes may be subdivitedseveral tapéles
delimited by file marks.

The standarddeblocker " support packagassists in the presentation of a byte-oriented interface “ooft@m
underlying record-oriented interface, implementing a layer of buffetivad “hides” the underlying record
structure.

The *byte ” glossary entry(annex A)specifiesthe set ofmethodsfor this device type. For reference, those
methods are listed as follows:

open (-- okay?) Prepare this device for subsequent use.

close () Close this previouslgpen ed device.

read (addr len -- actual) Read device into memory buffer; return actual byte count.
write (‘addr len -- actual) Write memory buffer to device; return actual byte count.
seek (pos.lo pos.hi -- status) Set device position for neatl orwrite

load (‘addr -- size) Load a client program from device to memory.

3.74 “network ” devices

“network " devicesare packet-orientedevices capable ofending andreceiving packets (framegdphat are
addressed according to Local Area Network (LAN) specifications for M&d@ssControl (MAC) addresses
administered by the IEEE Registration AuthofiPpen Firmware typically usesétwork ” devices for booting.

The standarddbp-tftp " support package assists in the implementation of libeed“” methodfor this device
type

The "network ” glossary entry(annex A)specifiesthe set ofmethodsfor this device type. For reference, those
methods are listed as follows:

open (-- okay?) Prepare this device for subsequent use.

close () Close this previouslgpen ed device.

read (addr len -- actual) Read device into memory buffer; return actual byte count.
write (addr len -- actual) Write memory buffer to device; return actual byte count.
load (‘addr -- size) Load a client program from device to memory.

The followingpropertiesare specific to this device type:

8 For information on the use of MAC addresses and Organizationally Unique Identifiers (OUI), see IEEE Std 802-1990. Taaplyi for MAC
address, contact the Registratiéathority, IEEE Standards Dept., 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.

28

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

”

“local-mac-address Standardproperty nameo specify preassigned network
address.

Standardproperty nameo specify network address last used.
Standardproperty hameo indicate network address length.

Standardproperty nameo indicate maximum packet size.

”

“mac-address
“address-bits
“max-frame-size

”

”

3.75 “serial " devices

“serial " devicesare byte-oriented sequentially accessed devigsh as asynchronous communication lines
(often attached to “dumbterminals). Open Firmwargypically uses Serial " devices for consolénput and
output.

The “serial " glossary entry(annex A)specifiesthe set ofmethodsfor this device type For reference, those
methods are listed as follows:

open (-- okay?) Prepare this device for subsequent use.

close () Close this previouslgpen ed device.

read (‘addr len -- actual) Read device into memory buffer; return actual byte count.
write (addr len -- actual) Write memory buffer to device; return actual byte count.
install-abort (--) Begin polling for a console abort sequence.

remove-abort (--) Cease polling for a console abort sequence.

restore (-) Restore device to useable state after unexpected reset.
ring-bell (-) Ring the bell.

3.7.6 Memory

In this contextmemoryrefers to traditionaRAM, suitable for temporary storage ddita. Typically, the aggregate
amount of mairmemory on a system igepresented by a singltevice nodeThe propertiesof thatnode describe

the regions ofmemorythatexistandthosethat arecurrently available. Thenethodsprovide fine-grained control

over the allocation of that memory. These allocation methods are intended forayséehy-specifiprograms that

need precise control oveheir use of physical memory. Portable programs must use other functions (e.g.,
alloc-mem andfree-mem).

The “memory” glossary entry(annex A)specifiesthe set of method®r this device type For reference, those
methods are listed as follows:

claim ([phys.lo ... phys.hi] size ... align -- base.lo...base.hi) Allocate (claim) addressable resource.
release ('phys.lo ... phys.hi size ... --) Free (release) addressable resource.

The “memory” glossary entry (annex A) defines the followipgpperties For reference, those propertae listed
as follows:

“ ”

reg Standard property defining thghysical addresses
installed in the system without regard to whether or not
that memory is currently in use by the Open Firmware or
client program
“available ” Standard feg ” format property defining the regions of

physical address space that are currently unallocated by
the Open Firmware.

3.8 Standard support packages
Support packageareused by othepackagego implementcommonly used functiondVith the exception of the

support packages related to dispthvicestheyarelocated inthe /packages device nodeppenedwith either
open-package or$open-package , andclosedwith close-package

29

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
3.8.1 “disk-label " support package
The "disk-label " packageinterprets thedisk label, interpreting any “partitioning” information contained

therein. It is used byblock " devicedrivers

This package uses thead andseek methodsof its parent. It defines the following methods:

open (-- okay?) Prepare this device for subsequent use.

close () Close this previouslgpen ed device.

load (‘addr -- size) Load a client program from device to memory.

offset (d.rel -- d.abs) Convert partition-relative disk position to absolute position.

3.8.2 “obp-tftp " support package

The “obp-tftp " packageimplements the Internet Trivial File TransfBrotocol (TFTP) for use in network
booting. It is typically used byrfetwork " device drivers

This package uses thead andwrite methodsf its parent, and defines the following methods:

open (-- okay?) Prepare this device for subsequent use.
close () Close this previouslgpen ed device.
load (‘addr -- size) Load a client program from device to memory.

3.8.3 “deblocker " support package

The ‘deblocker " packageassists in the implementation lofte-orientedead andwrite methodsfor block-
oriented or record-orientedevicessuch as diskandtapes. It provides a layer of buffering to implemertigh-
level byte-oriented interface “on tayf” a low-level block-orientednterface. The deblocker " support package
defines the following methods:

open (-- okay?) Prepare this device for subsequent use.

close () Close this previouslgpen ed device.

read (addr len -- actual) Read device into memory buffer; return actual byte count.
write (‘addr len -- actual) Write memory buffer to device; return actual byte count.
seek (pos.lo pos.hi -- status) Set device position for neatl orwrite

Any packagethat usesthe ‘deblocker ” support package must defirthe following methods, which the
deblocker uses as its low-level interface to the device.

block-size (-- block-len) Return “granularity” for accesses to this device.
max-transfer (-- max-len) Return size of largest possible transfer.

read-blocks (‘addr block# #blocks -- #read) Reflolocks starting ablock# from device into memory.
write-blocks (‘addr block# #blocks -- #written) Writthlocksfrom memory into device, starting lalbck#

3.84 Terminal emulator support package
Theterminal emulator support packagépresent, shall interpret control sequences as described in annex B.
3.8.4.1 Terminal emulator interface conventions

For historical reasons, thterminal emulator support packageisterface conventions differ from those used by
other support packages.

A standardpackageof the ‘display " devicetype that usesthe terminal emulator support packadmes not
createopen andclose methodsin the usualvay. Instead, itexecutess-install andis-remove , which
themselves create suitaldpen andclose methods that, when latexecuted, automaticalipstall and initialize

30

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

the terminal emulator support package. Be#test method for such a packagan either be created in the
normal fashion or by executingrselftest

is-install (xt--) Createopen and other methods for this display device.
is-remove (xt--) Createclose method for this display device.
is-selftest (xt--) Createselftest method for this display device.

Instead of acquiring itbw-level servicewith the usual technique of calling methods of its parent, the terminal
emulator uses a set of interfaefer wordsandvalue s. This interface is called tliefer wordsinterface. A
defer word is aForth word (or an equivalenECode functiohwhich, when executedhas theeffect ofexecuting
another Forth word. It is like a varialileat executests contents. The terminal emulateses a group alefer

words for invoking displaydevice driverroutines. When a displagevicedriver is opened it setsthe values of
thosedefer words scthatthey later executethe driver’s device-specific routindsr performing various display
operations.

Open Firmware functions that write text to a display device use the normal package methods intertéefer The
words interface is used fohe internal communicatiobetweerthe terminal emulatosoftwareand thelow-level
display management routines.

3.8.4.2 Terminal emulator state variables

The following value words are usedand/or set by théerminal emulator The ‘fh8 ” generic frame-buffer
support packageisesthem to determine whergnd how to displaycharacters. Displagevice driversmay use
them as needed. display devicalriver routine is permitted to change theslues temporarily, buhe previous
values must be restored before that routine exits.

line# , column# , inverse? andinverse-screen are set by theterminal emulatorand areused by the
driver or the T8 ” support packagetlines and#columns areset by the driver ofb8-install and are
used by the terminal emulator and tffie8* " support package.

line# (--line#) Return the current cursor line number.

column# (-- column#) Return the current cursor column number.

inverse? (-- white-on-black?) Indicates how to paint characters.

inverse-screen? (-- black?) Indicates how to paint the background.

#lines (--rows) Return number of lines of text in text window.

#columns (-- columns) Return number of columns of text in text window.

3.8.4.3 Display device low-level interfaces

Theterminal emulatorusesthe following defer words to access displalevice driverroutines. When display
devicedriver isopened it must set thevalues of thesdefer words sathatthey will executethe corresponding
device-dependent routines definedthwt devicedriver. Many displaydevicedrivers canusethe ‘fb8 " generic
frame-buffer support package do most of the work. Ithatcase, thdollowing defer wordsareset as a group
by executingfb8-install , and thenselecteddefer words, for whichthe generic implementations are
incorrect for that device, are changed as needed.

The text cursor is considered to etween twaadjacent characters. For displdfiat indicate theursor position
by highlightling a particular character, the “true” cursor position is just before the highlighted character.

draw-character (char --) Draw a character at the current cursor position.
reset-screen (--) Perform frame-buffer device initialization.
toggle-cursor) Toggle the state of the text cursor.

erase-screen -) Clear the screen.

blink-screen) Flash the screen.

invert-screen) Exchange the foreground and background colors.

31

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
insert-characters (n--) Insertn spaces to the right of the cursor.
delete-characters (n--) Deleten characters to the right of the cursor.

insert-lines (n--) Insertn blank lines at and below the cursor line.
delete-lines (n--) Deleten lines at and below the cursor line.

is-install creates araw-logo methodin the currenpackagethatwill executethe draw-logo defer

word. Thedraw-logo method is not invoked by the terminal emulator, bubéyner .
draw-logo (line# addr width height --) Draw (&he#) the logo stored at locatiauddr.

NOTE—Thesedefer words are intended to be calleghly by the terminal emulator. Essentially, tldefer words
interface is a private communication channel betwherterminal emulatgpackage and a display device dritieat happens
to use it. There is no requirement that a given display device driver must use the terminal emulator support package.

3.8.4.4 Frame-buffer support routines

The frame-buffersupport routines make éasy toimplement thdow-level display interfaces farertain kinds of
“dumb” bit-mapped frame buffer§here aretwo sets of frame-buffesupport routines. One set is for 1-bit-per-
pixel frame buffers, and the other for 8-bits-per-pixel frame buffers. The 8-bits-per-pixel routirssreatimes be
coercedinto service for deeper (e.g., 24-bits-per-pixel) framdfers as well. Itcan bedifficult to achieve
acceptable text display performance with “dumb” fraouéfers if the rendering routines are writtelirectly in
FCode because each display operation typicalgnges hundreds of individual pixels. These support routines can
alleviate that problem, since their underlying implementation can be in optimized machine code.

The following discussion applies to both thesoletel -bit frame-buffer support routinesd the8-bit frame-buffer
support routines. When referring to thiesoletel-bit frame-buffer routines substitutee number Tor the number
8. The frame-buffer support routines are used as follows:

The display driverpackagedetermines theirtual addressof the beginning of the frameuffer (typically, with a
mapping operation)setsframe-buffer-adr to thataddress with thé-Code equivalent ofhe phrase tb
frame-buffer-adr ", sets upthe font withset-font , and therexecutesb8-install with appropriate
arguments describing the widédmd height of thérame buffer.This establishes behaviors fane defer words
thatcomprise théow-level displaydevice interfaceThedisplay driver packageenreplaces théehaviors of any
of thosedefer words for which ithas abetter or more appropriate implementattban theone supplied by the
frame-buffer support package just installedd corrects the centering iiecessary by changinthe values of
window-left and possiblyvindow-top

set-font establishes the forfior use bythe frame-buffer support routines. lé8guments aréypically supplied
by default-font , thus using the fonprovided bythe system, but a displagiriver cansupplyits own font by
calling set-font with arguments denotinthat font. >font is used internally byhe frame-buffer support
packages. It caalso be used by display drivetisat perform their own rendering (not using th&ame-buffer
support packages) using the system default font.

default-font (-- addr width height advance min-char #glyphs)

Return the font parameters for the default system font.
set-font (‘addr width height advance min-char #glyphs --)

Set the current font as specified.
>font (char -- addr) Return beginning addresscfoar in the current font.

The followingvalue words are used internally by both the 1-bit and the 8-bit frame-buffer support routines.
— frame-buffer-adr is set by the display driver prior to installing the support routines.

32

CORE REQUIREMENTS AND PRACTICES

— screen-height , screen-width

fb8-install

, window-top
. The display drivercan changewindow-top and window-left

IEEE
Std 1275-1994

, and window-left are set by theexecution of

afterwards ifthat is

necessary to correct the centering of the display on the screen.

— char-height |, char-width |, andfontbytes are set by the execution sét-font
Most display driver packages doot directly use screen-height , screen-width , window-top
window-left | char-height |, char-width , font , orfontbytes . For those that do, the primary use is for

driversthat install theirown routines in place of one or moretlbé& support package routines; such routisfésn
need to knowhe displayandfont geometryand the driver caavoid keeping a duplicapy ofthe information

by using these values.

frame-buffer-adr (--addr)
screen-height (-- height)
screen-width (-- width)

window-top (-- border-height)
window-left (-- border-width)
char-height (-- height)
char-width (-- width)
fontbytes (-- bytes)

3.8.4.4.1 1-bit frame-buffer support routines

Return current frame-buffer virtual address.
Return totdieightof the display in pixels.
Return totaidth of the display in pixels.

Return window top border in pixels.

Return window left border in pixels.

Return thieightof a font character in pixels.
Return thevidth of a font character in pixels.
Return interval between entries in the font table.

The ‘fbl " genericframe-buffer support packagenplements thealisplay device low-level interfaces for frame
bufferswith 1 memory bitper pixel. The fbl " generic frame-buffer support package isadsolete featurthat is
implemented in many existing systems. It is describeanimex H. Asystem may, but neeabt, implement this

support package.

3.8.4.4.2 8-bit frame-buffer support routines

The ‘fb8 " genericframe-buffer support packagenplements thelisplay device low-level interfaces for frame-
bufferswith 8 memory bitsper pixel. It assumethat successive memory bytesrrespond to successive pixels,
possiblywith undisplayedytes athe end of each scan linend thatoytes at loweaddresses correspond to pixels
to the left. In normal (not inversg)deo mode, background pixedse drawn with thealue 0x00andforeground
pixels are drawn with the value OxFF.

Execution offb8-install
device interfacedefer words, and setsthe values ofscreen-height
window-left |, #lines , and#columns .

installs the other routines as thehaviors otthe correspondindpw-level display
, screen-width , window-top

fb8-install ('width height #columns #lines --) Install all built-in generic 8-bit frame-buffer routines.
fb8-draw-character (char --) Implement thefth8 ” draw-character function.
fb8-reset-screen (--) Implement thefb8 ” reset-screen function.
fb8-toggle-cursor (--) Implement thefb8 ” toggle-cursor function.
fb8-erase-screen (--) Implement thefb8 ” erase-screen function.
fb8-blink-screen (--) Implement thefb8 ” blink-screen function.
fb8-invert-screen (--) Implement thefb8 ” invert-screen function.
fb8-insert-characters (n--) Implement thefb8 ” insert-characters function
fb8-delete-characters (n--) Implement thefb8 ” delete-characters function.
fb8-insert-lines (n--) Implement thefb8 ” insert-lines function.
fb8-delete-lines (n--) Implement thefb8 ” delete-lines function.

fb8-draw-logo (line# addr width height --)

Implement thi#8 ” draw-logo function.

33

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

4. Internal procedures

Open Firmware’s primary task is to control the machine from the time power is applied until the primary operating
system has bedoadedand has taken control of the machine.

In typical operation, Open Firmware performs the following sequence of operations, in the order given:
a) Initialize and tegbuilt-in devices

b) Locate, initialize, and tegiug-in devices

c) Load and executedient program

d) Provide services requested by the client program.

4.1 Forth language environment

The underlyingexecution model for Open Firmwaretige execution model othe Forth programming language.
The Forth execution model includes the following items:

— Dictionary. The list ofForth words.

— Data space.The memory used by Forth words.

— Data stack.The stack used for parameter passing.
— Return stack. The stack used for procedure nesting.
— Input buffer. The current line of textual input.

— Input source. The source device for textual input.

— Output stream. The destination of textual output.

— Text interpreter. Processes textual commands.

Open Firmware usdse dialect of Fortldescribed in ANSI X3.215-199Z hatdocument should be consulted for
more information about the Forth programming language.

4.2 Start-up sequence

Thetypical start-upsequence is described in more ddiailbw. Someortions of the start-upequence magot be
present in all implementationsor example, the “probingfrocess mayot be relevant teystems without any
provision forplug-in devicesand theability to manuallyinterrupt the start-ugequence is of dubious value if no
user interfacds present.

After thesystem power isurned on, or theystem is otherwiseestarted, bubeforeOpen Firmware gains control
of the machine, othesystem-dependerfirmware may be executed. Typicallshat otherfirmware testssome
portion of the machineeforepassing control to Open Firmware. The details of such other firmwarmeteds
it uses to pass control to Open Firmwaaied the“division of labor” betweernthat otherfirmware and Open
Firmware in the initialization dbuilt-in devicesand othedevicesthat do notusethe Open Firmware methods of
auto-identification, are outside the scope of this standard.

Upon entry, Open Firmware initializes @s/n data structureandthose devices necessary fterown execution. If
the script is presentand enabled, Open Firmware executi® contents of the script. Open Firmwdhen
initializes a system-dependent set of built-in devices and locates and initializes the system’s plug-in devices.

The process of initializing a device generally includes sameunt of testing to ensutieat thedevice is function-
ing correctly.

34

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

After the devices are initialized, Open Firmware selects devices for console input and output and displays a start-up
message on the console output device. If the preceding initialization/testindestsgied any devidailure condi-

tions, messages describing those failumesy be displayed omhe console output devicéefore the start-up
message.

After the console is established, additional initialization and testing operations may be performed. For example, the
initialization and testing of large memory regions might be deferred until after the console has been established.

Open Firmware theselects a boot device, uses itldad a client program into memory,and executeghe client
program.Subsequentlythe client progranuses Open Firmware services W client interface.The sequence
may be different in certain circumstances. Some examples follow:

— If a serious hardware failure detectedduring an initialization/testing step, the normal starsaguence may
be aborted at a system-dependent step.

— The usemay choose to abatthe start-upsequence frorthe keyboardperhaps to avoid automatic loading and
execution of the client program.

— The system may allow the user to dynamically control the extent of various testing steps.
— The execution of the script may modify subsequent portions of the start-up sequence.
— Automatic booting may be disabled bgnfiguration variables

4.2.1 Initial self-test

Initial self-test is whatever testing is performedtire very early stages ofhe start-upsequence, befor®pen
Firmware gains control of the machine.

The details of the initiagelf-test sequenareoutsidethe scope othis standardbut typically include somamount
of “sanity checking” ofthe processorand the hardware that dosely connected td. Usually, someportion of
initial self-test (perhapall of it) is written inregister-based assemldbnguage pecause imustrun when the
machine first begins to execute instructions and must initialize and test the computer at a very low level.

The details ofhow this initial self-test transfers control to Open Firmwae notspecified bythis standard,
becausdahe state of the machine at the timetlodt transfettends to be quite system-specific. Oftdme transfer
can be as simple as jumping to a well-known location in ROM.

4.2.2 Firmware initialization

After the machine-dependeinitial self-test, Open Firmwargains control of the machirendbegins to initialize
itself. Theprecise details dfhis initialization depend on the implementatiand thecomputer system, but the
following steps are often included (in no particular order):

— Determining the memory configuration.

— Selectingand preparing thenemory to be used fdforth andOpen Firmware data structures like stacks,
memory allocation pools, artevice treénternal structures.

— Initializing various devices(e.g., MMUs, interrupt controllers, timersjhat are requiredor the basic
functioning of Forth and Open Firmware.

— Initializing a “fallback” diagnostic output device to displarror reports incase anerror occurs during
firmwareinitialization.

— Testing configuration memory to determine if its contents are valid and, if not, resettoanflgriration vari-
ablescontained therein to their default values.

35

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

4.2.3 Start-up script evaluation

If the scriptis presenandenabled, the Forth program contained therein is evaluated. Normally, after the script is
evaluated, the start-upequence continueslowever, it is possible tanclude in thecustom start-up script
commands that modify the remainder of the start-up sequence in an essentially arbitrary manner.

The normal Open Firmware start-up sequence is as follows:

a) Power-on self-test (POST)

b) System initialization

c) Evaluate the script (iise-nvramrc? is true)

d) probe-all (evaluate=Code

e) install-console

f) banner

g) Secondary diagnostics and other system-dependent initialization
h) Default boot (ifauto-boot? s true)

i) Invoke thecommand interprete(if the preceding step returns)

If the user interfacescript feature is implemented, usensy modifythe portions of the start-upequencehat
follow its evaluation.

424 Plug-in device probing

Probing is the process of determining the presence and characteriptiog-iof devicesFor adevicethatuses the
Open Firmware identificatiomethods,the bulk of the probingrocess consists dhe execution of arFCode
programassociated with the device.

Some devices are always attached to a system, and other plug-in degiopsional. Thelevice nodeandassoci-
ated drivers for permanently attactdelices usually reside iie mainOpen Firmwaresystem ROM, where they
are permanently installed in tkevice tree Thedevice nodes foplug-in devicesare not permanently installed in
the device tree; Open Firmware must locate those devices before using them.

Probing is the process of locating plug-in deviaed installing theidevice nodes ithe devicetree. Thisinvolves
selecting a bus device and using it to test for the presence of devices attached to that bus.

It is possible for glug-in device itself to be a bus device. For example, an $BiEE Std 1496-1993 [B2]) plug-
in devicemight be an adaptdor a VMEbus(IEEE Std 1014-1987 [B1]) in an external card cagefore the
children of a bus devicgan beprobed the device itselimust already exist in thdevicetree. For the preceding ex-
ample, theSBus would have to be probed to loctte VMEbus adapter and install itdevice node before the
VMEbus could be probed for its children.

Thedevicetree is thus constructed incrementally, beginning from the permpagmnepresentinguilt-in devices
and proceeding outward toward the leaves of the tree.

The system default probing sequence is automatically executed during the start-up sequence, unless overridden.

Eachbus devicehat iscapable of accepting plug-ptevices defines a device method foobing its subordinate
devices. In addition, bus devices may define device-depeundeninterface commandsr probing.

36

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

425 Console selection

The console ighe pair of input andutputdeviceshatOpen Firmware uses for communicating wttle user(for
example, a keyboaraind abit-mapped display). Theonsole deviceareselected after probing, allowirtge use of
plug-in devicedor the console. Input and output may be on different devices.

After probing, aninput deviceand anoutput deviceare selected for use abe console devicesThe selection
process may beither automaticbased uporthe set ofdevices foundduring probing, or asonfigured by
configuration variablesThe drivers for the selected devices@penedand console input and output is directed to
those devices.

Beforethe console is activated, any output produced by Open Firmmvagt either bdéuffered forlater display or
directed to a separate diagnostic output dew¢eether a diagnostic outpdevice exists, how it is chosen, and
how it is accessed, are all system-dependent.

After the console is activated, subsequent Open Firmware output is displayds: oansole output device by
invoking itswrite method Characters are received from the console input device by invokiegdts method.

4.2.6 Secondary self-test

Except for thoselevicesthat are s@losely connected tthe mainprocessothatthey must be testecery early in
the start-upsequence, devicesting is often deferredntil after theconsolehasbeen activatedThis has three
benefits:

— Messages showing the progress of and the results from the testing may be displayed on the console.

— Theuser-perceived delay frothe timepower is appliedintil the console is activated isminimized (because
the testing in question occurs after console activation rather than before).

— The testingmay be done vigpackage methodshus providing a riclset of tools for use in developing and
controlling the tests and allowing machine-independent testipugfin devices

4.2.7 Booting

Booting is theprocess ofoading and executing eclient program, usuallythe operatingsystem. Booting usually
happens automatically, requiring no user intervention. Fronsdhenand interpreteithe user camalso explicitly
initiate booting.

4.2.7.1 Boot process

The boot process proceeds as followsd@viceis selected for booting by invokirtge device’sload method,a
program is read from that device into memory using a protocol that depends on the type otdevibe,program
is then executed. The further behaviottadt progranmay be controlled by aargument string that imade avail-
able tothe program. Often, this program isecondary boot progranwhose purpose is to loget another pro-
gram. Thesecondary bogirogrammay be capable efsing additionaprotocolsotherthan theprotocolthat Open
Firmware used to loathe first program. For example, Open Firmwaray usethe Trivial File TransfeProtocol
(TFTP) to load thesecondary bogbrogram, which themisesthe Network File System (NFS) protocol to load the
operating system from another file.

For disk booting, Open Firmwareight load thesecondary bogbrogram by reading the firé&w sectors from the
disk, and thatsecondary booprogram might understand the operatsyptem’s native filesystemstructure,
loading the operating system from such a file.

Typical secondary boot programs accept arguments of the following form:

filename -flags ...

37

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

wherefilenameis the name of &ile containing the operatingystem,and-flagsis a list of options controlling the
details of the start-up phase of either Seeondary booprogram, the operatingystem orboth. However, from
Open Firmware’s point ofiew the boot arguments are aopaquestring that ispassed uninterpreted tbe boot
program. The boot arguments are made available througfie¢néinterface

The device pathof the boot device isalso available to client programs, @y maydetermine thedevice from
which they were booted.

4.2.7.2 Boot protocol

The protocol used tdoad the firstclient program depends on thigype ofdevice For example, the first stage disk
bootmight read dixed number oblocks fromthe beginning of the disk. The first stage téypetmight read a
particular tape file.

4.2.8 Interrupting start-up

The provisions fointerrupting the start-upequence by user commaag implementation-dependent. Tpical
methoddor doing so are as follows:

— Thedevice driverfor the consoleinput device may periodically test fohe presence afome eventhatmeans
the user wants to interrupt the current operatiomically, thatevent is a particular character or a particular
combination okeyssimultaneously depressed. The usual response to such a user request is to abort the current
operation and invoke theommand interpreter

The effectiveness dhis methoddepends on the presence of a timer-driveerruptfacility (the “alarm”func-
tion) to periodically invokehe consoleinput driver so that itnay test foithe user-interrupt request regardless
of what other operationsiay beoccurring. In most implementations, it is inappropriaténterrupt certain
portions of the start-upequence. Those portions mayduarded by disabling the timer interrupt whitey
are executing.

— Test sequencdbat may take dong time to finish, such amemory tests, may choose to explicitly check for a
user-interrupt request at certain times. The usual response is to skip the remainder of the test, but thence to
return to the normal start-up sequence so that it may proceed.

4.3 Path resolution

This section defineshe process of resolving device pathgiven by a device-specifiefhere are threeontexts in
which this can occur:

— find-device . In this context, the intention is tocatethe namedievice nodeand select it as thactive
packagewithout any other side effects.

— open-dev . In this context, the intention is wpen everynode named in thpath byexecuting itsopen
method, therebygreating an instance chain, and to returnillaadle of the node at th&il end of the chain
(the node farthest from the root node).

— execute-device-method . In this context, the intention is wpeneverynode named in thpath except
for the last nodeAn instance chain is created, including an instdocéhe last node, but instead of executing
that lastnode’sopen method, a different method, given as an argumemixasutedThen theopen instances
areclosedand the instance chain is destroyed.

The overall structure of thegathresolution process ithe same irall threecontexts.This descriptiorshows it as
one process with conditional tests at places where the details are context-dependent. However, it need not be imple-
mented that way; for example, each context could be implemented separately.

The process is described English as aet of procedures, each consisting of stbps aregenerally executed in
order, with thescope ofconditional tests shown by indentatiand laping structures shown by labelad“go to”

38

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

lines. It makes liberalise of variable names to identify intermedidtga items. Thecope ofsuch variables is
“global” with respect tahe procedures. These of these variable nameésesnot imply that animplementation
must or should use such variables; thegused solely for descriptive purpos&milarly, the description of the
process interms of proceduredoesnot imply that the implementatioshould be so structured; the separate
procedures were used in the description so that the top-level description would not be unwieldy.

The following notation describes the parsing of pathnames into component parts:
left-split(string, “X”) -> initial, remainder
String, initial, andremainderare the names of string variables, axrti§ a character.

Left-split divides string into two disjoint substrings, settingnitial to the portion ofstring before the first
occurrence othe characterxX’, and remainderto the portion ofstring following the first occurrence of the
character X". Neitherinitial norremaindercontains thafirst occurrence ofX’, althoughremaindermay contain

other lateroccurrences dfhat character. I§tring doesnot contain the charactex™ initial is set tostring in its
entirety, andemainderis set to the empty string.

right-split(string, “X”) -> initial, remainder

Right-split is similar toleft-split, exceptthat thedivision of thestring occursaround the lasbccurrence of the
character X’, rather than the first.

The use ofthe preceding notatiodoesnot necessarily implythe existence of functions namddft-split and
right-split; it is simply a notational conventio(iThis standardioes define dunction left-parse-string
whose semantics are very similar to left-split, but the details of returning the results are somewhat different.)

In searchindgor a matching node, the order in which the varicb#id nodesareconsidered is unspecified. At the
implementation's discretion, if no matchfiaind amonghe children, the searahay be widened to include the
children's children, recursively to any depth.

In the following algorithmic description (4.3.1 through 4.3.5), the text enclosed in boxes is commentary describing
the intention of the algorithm. The text outside of the boxes is definitive.

431 Path resolution procedure (top level procedure)

If the pathnameadoes not begin with “/”, and its firstode name&omponent is aalias replace thaliaswith its
expansion.

a) If PATH_NAME does not begin with the “/” character,
1) Left-split(PATH_NAME, “/") -> HEAD, TAIL.
2) Left-split(HEAD, “”) -> ALIAS_NAME, ALIAS_ARGS.
3) If ALIAS_NAME matches a defined alias,
i) Replace ALIAS_NAME with its alias value.
i) If ALIAS_ARGS is not empty:

a) Right-split(ALIAS_NAME, */) -> ALIAS_HEAD, ALIAS_TAIL.

39

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

b) Right-split(ALIAS_TAIL, “") -> ALIAS_TAIL, DEAD_ARGS.

c) If ALIAS_HEAD is not empty,
Concatenate(ALIAS_HEAD, “/”",ALIAS_TAIL) -> ALIAS_TAIL.

d) Concatenate(ALIAS_TAIL, “”, ALIAS_ARGS) -> ALIAS_NAME.
iii) If TAIL is empty, replace PATH_NAME with ALIAS_NAME.

iv) Otherwise (when TAIL is not empty),
Concatenate(ALIAS_NAME, “/", TAIL) -> PATH_NAME.

If the pathnameafter possible alias expansion, begins with “/”, begin the search at the root node. Otherwige,
begin at theactive package

b) Otherwise (when PATH_NAME begins with the “/” character),
1) Remove the “/" from PATH_NAME.
2) Set theactive packagéo the root node.

c) Ifthere is no active package, exit this procedure, retutfiailsg

Begin the creation of an instance chain.

NOTE—If, at this step, the active package is not the root node and weagrerifdev or execute-device-method
contexts, the instance chain that results from the path resolution process may be incomplete.

d) Set the temporary variable PARENT-INSTANCE to zero, ARGUMENTS and UNIT_ADDR to empty strings.

\This is the beginning of a loop whose body is executed once for each node name of the pathname. \

e) If PATH_NAME is empty, go to step m).

‘Open the node if that is appropriate. \

f) If in execute-device-method oropen-dev context,
1) Create a new linked instance using the procedure described in 4.3.2.

2) Execute the nodepen method.

\ Parse the nextode nameénto itsdriver nameunit addressanddevice argumentomponents.

g) Left-split(PATH_NAME, “/”) -> COMPONENT, PATH_NAME.

h) Left-split(COMPONENT, “.") -> NODE_ADDR, ARGUMENTS.
i) Left-splittNODE_ADDR, “@") -> NODE_NAME, UNIT_ADDR.
j) Search for a matching child node using pnecedure described in 4.3.3.

k) If the search succeeds,

40

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

The following optional step creates well-formed instance chains (i.e., with no missing components) by opening
intermediate nodes that were not explicitly named imptitaname

1) (Optional.) If inexecute-device-method context oopen-dev context, traverse the path from the
active packagéo thechild nodefound in the search step; at each node in that path, exclusive of the two
endpoints,

i) Set active package to the node in question.

i) Create a new linked instance using grecedure described in 4.3.2, with ARGUMENTS and
UNIT_ADDR temporarily set to the empty string.

iii) Execute the node'spen method.

‘ Move to the matching node. ‘

2) Set the active package to the child node found in step j).

\Go back to the beginning of the loop to handle furff@hnamecomponents. \

3) Go back to step e).

\On a failing search, clean up any resources that have been allocated so far, then exit. \

[) Otherwise, (when the search fails):

1) Close and destroy any instances that were created during this procedure, closing more recently created
instances first.

2) Restore theurrent instanceo the instance that was current prior to beginning this procedure.
3) Restore the active package to the package that was active prior to beginning this procedure.

4) If in open-dev context orexecute-device-method context, exit from this procedure, returning
false

5) Otherwise (when ifind-device context), exit from this procedure Byow ing a nonzero code of
unspecified value.

\At this point, the finahode naméas been selected. \

m) If in open-dev context,

‘Open the final node, thus completing the instance chain, and return its ihandle. ‘

1) Create a new linked instance using the procedure described in 4.3.2.

2) Execute the nodetpen method.

3) Restore the current instance to the instance that was current prior to beginning this procedure.
4) Restore the active package to the package that was active prior to beginning this procedure.

5) Exit from this procedure, returning thiendleof the instance created in step m1).

41

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

n) Otherwise, if inexecute-device-method context,

\Complete the instance chain, execute the desired method, clean up, and exit.

1) Create a new linked instance using the procedure described in 4.3.2.

2) Attempt to execute the method whose name was given asthedargument to
execute-device-method , guarded by aatch .

3) Destroy the current instance.

4) Close and destroy any parent instances that were created during this procedure, closing more recently

created instances first.
5) Restore the current instance to the instance that was current prior to beginning this procedure.
6) Restore the active package to the package that was active prior to beginning this procedure.

7) If the method execution in step n2) succeeds (i.e., the method exists andtdidwotan error), exit
from this procedure, returning the value that resulted from the execution of the named metinoel and

8) Otherwise (when the method execution in step n2) fails), exit from this procedure, retaisgng

0) Otherwise (when ifind-device context), exit from this procedure, leaving the active package set to the
node that was located by this procedure.

4.3.2 Create new linked instance procedure

Create a new instance, add it to the instance chain, and set its various fields (used several places by “Path
Resolution” procedure).

a) Create a newnstanceof theactive packagend make it theurrent instance
b) Set the instanceray-args field to ARGUMENTS.
c) Setitsmy-parent field to PARENT-INSTANCE.
d) Set PARENT-INSTANCE to the newly created instance.
e) Setthe instancersy-unit field as follows:
1) If UNIT_ADDR is empty,

i) If the active packagdas a feg " property, semy-unit to the physical address in the first
component of therég ” property value.

i) Otherwise, setny-unit to O, ... 0.
2) Otherwise, seny-unit to UNIT_PHYS.

f) Exit this procedure.

42

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

4.3.3 Search for matching child node procedure

Search for a node that matches the gidemer nameandunit addresssearching first the direct children of the
active packageand then, optionally, deeper levels of the tree (used by “Path Resolution” procedure).

a) If UNIT_ADDR is not empty,

Initialize the unit search for thactive packagby converting thenit addresstring to its canonical numerical
form.

1) If theactive packagéas adecode-unit methodgexecute the active packagdscode-unit method
with UNIT_ADDR as the argument and set UNIT_PHYS to the result.

2) Otherwise, return FAILURE.
b) Search for a matching node among the direct children of the active package, first using the exact match
criteria described in 4.3.4 and, if no exact match is found, then usingltheard matctcriteria described in

4.3.5.

c) If a match is found among those direct children, return SUCCESS.

\This optional step allows nodes to be located even if some intermediate nodes were omittedpitmaiee

d) (Optional.) Otherwise, (when no matching node is found among those direct children), repeat the following
steps for each of those children:

1) Set theactive packageo achild node

2) Recursively execute this “Search for Matching Child Node” procedure until either a matching node is
found or all nodes in this subtree have been searched.

3) Restore the active package to the node that was active at the beginning of the process.
4) If a match is found, return SUCCESS.
e) Return FAILURE.

4.3.4 Exact Match criteria

Under the Exact Match criteria, the node must matchdtheer nameandunit addresg€omponents if both are
given in thepathnameOtherwise, the node must match whichever component is given (used by “Search fo
Matching Child Node” procedure).

=

a) If NODE_NAME is not empty,
1) If the test node has n@dme” property, return FAILURE.

2) If the value of theame” property does not match NODE_NAME, according to the criteria described in
4.3.6, return FAILURE.

b) If UNIT_ADDR is not empty,

1) If the test node has nogg ” property, return FAILURE.

43

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

2) If the physical address in the first component of the value ofrége™property does not match
UNIT_PHYS, return FAILURE.

c) If both NODE_NAME and UNIT_ADDR are empty, return FAILURE.
d) Return SUCCESS.

4.3.5 Wildcard Match criteria

Under the Wildcard Match criteria, the node must matchdiiveer namecomponent if it is given in theathname
and the node must have freg " property (used by “Search for Matching Child Node” procedure).

a) If NODE_NAME is not empty,
1) If the test node has n@dme” property, return FAILURE.

2) If the value of theame” property does not match NODE_NAME, according to the criteria described in
4.3.6, return FAILURE.

b) If the test node has agg ” property, return FAILURE.
c) If both NODE_NAME and UNIT_ADDR are empty, return FAILURE.
d) Return SUCCESS.

4.3.6 Node Name Match criteria

The Node Name Match criteria allows the “manufacturer name” portion of the node name to be optionally
omitted from the pathname.

a) If NODE_NAME contains a,",

1) Ifthe NODE_NAME string is the same as the entire string value oind@é” property, return
SUCCESS

2) Otherwise return FAILURE.
b) If NODE_NAME does not contain a3 ",

1) Ifthe NODE_NAME string is the same as the entire string value oindr@é” property, return
SUCCESS.

2) If the NODE_NAME string is the same as the string value of the portion oh#émee" property
following its first “, ", return SUCCESS.

3) Otherwise return FAILURE.

44

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

5. Device interface

Thedevice interfacallows Open Firmware to identiignduseplug-in devicesThe interface idased on dyte-
coded programming language knownF&de TheFCodelanguage is evaluated by a Open Firmware component
known as thé&Code evaluatar

5.1 General

The Open Firmwardevice interfacespecifiesthe behavior of dirmware system sdhat, when compliantevices
are added to a computgystem whoséirmware is compliant, the firmwammay determine the characteristics of
those devices and may use them for various purposes, such as text display andlpaoimgm

511 Description

A standardFCode evaluatomprovides a defined environment ftire execution ofstandardFCode programsA
standard FCode evaluator is typically a component of thefinootare associated with a CPU board.

A standardFCodeprogram is a program written in tl&Codelanguage (defined hereithat obeysprescribed
rules for program structureand usage. Consequently, its behavior is predictable vexecuted by astandard
FCode evaluator. A standard FCode program is typically residenploig-an device

A common use of atandard=Codeprogram is to implement a standgrdckagethat isrelevant to the kind of
device with which the FCode program is associated.

5.1.1.1 FCode basics

FCodeis a way of representingmogram in the Forth programming language by using machine-indepdaytient
codes to represent a setstdndard~orth words FCode uses a dialect Bbrth that isbased on ANSI X3.215-1994
(however, FCode isot a Standar®ystem as defined by ANS{3.215-1994), with extensions appropriate for
firmwarerequirements. AfrCode programnis a representation of a computer program in the FCode language.

FCodeprograms ar@rocessed by a software component known asGode evaluatarAn FCode evaluator reads
a sequence of bytes (the FCode program), performing a specified action for each byte.

Typically, an FCode program resides in a ROM attache@togin device TheFCodeprogramserves to identify
and toprovide afirmware device driverfor that device.The FCode evaluator is typically part of thefirmware
associated with a CPU board.

The meandor invoking the FCode evaluatoand for locating the FCode corresponding tparticular devices
depends on the set bfisesand features supported by a particular Firmware implementation. Those means are
described in machine-specific Open Firmware documents (see 2.1) and in clause 7.

Forth is a stack-basqurogramming language witpostfix syntax.Forth sourcecode may beeither interpreted
“on-the-fly” or incrementally compiled fdater executionFCode is semanticallgimilar to Forthsource code, but
the lexical tokens of Forth are space-delimited text strings, whereas the lexical tokens of FCode are binary bytes.

The basic action of a Fortommand interpretes to repeat the following sequence:

a) Collect a space-delimited string from the input buffer.
b) Find the corresponding name in a symbol table.
c) Either execute or compile the associated function.

45

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

An FCode evaluator replaces itemsaad b) with“Read a byte’and “Use that byte as arindex into an array,”
respectively. The same executable functions that are associated with textualdfdstare associated witli-Code
numbers

FCodeprograms are creatdtbm textual Forthsource code by program called @okenizer.A tokenizer reads a
sequence of textual Forth words and writes the corresponding sequence obltésdéhe specification for a pre-
ferred form of source code fgenerating=Codeprograms, andbr the behavior of a tokenizer procesghatform
of source code, is given gnnex C. The mappinigom textual Forthwords to FCode bytes isearly one-to-one,
and the preferred source format is very similar to a standard Forth program.

SinceFCode functionsre semantically identical to Fonttords,the FCode executioenvironment is that of the

Forth programming language. Fostlordsarepassednput arguments angrovide output results via a LIF@ata

stack Each stack element is an integer. The maximum stack depth is implementation-dependent, but must be at
least 64 elements.

5.1.1.2 Notation
This clause list&Code functionsising a short-form notation. The complete descriptions are given in annex A.
Each of the short-form descriptions in tklause giveshe name of th&Code function (usuallthe same as the

name of the correspondirigorth word), a stack diagram the FCode numberand abrief description. The
following is an example:

Name Stack diagram FCode number Description
dup (X--xX) 0x47 Duplicate the top item on the stack.

A stack diagrandocuments the argumerttgeat anFCode function removes frothe top of thedata stackand the
results that the function places on the top of the data stack, as follows:

(‘argumentl argument?2 ... -- resultl result2 ...)

The right-most item in each list representsttgemost item orthe data stack=Code functionshat do notaffect
the stack are shown with the stack diagram:

()

Some FCode functions, when evaluated, read one or bgtesfrom theFCode programThe descriptiofield for
such functions takes the following form:

(F: n1 /FCode# name string/ -- n2)

In this exampleFCode#andname stringrepresenbytesthat are readrom the FCodeprogram when th&Code
being described is first encounteradl &ndn2 represent the stack effect at that time, if any.)

5.1.2 Specification

In order to be compliant with the Open Firmwadeyice interface

— The boot firmware associated with @anain CPU device shall implement a standaf@Code evaluatqrthe
/packages standardsystemnode,and thecomplete set o$tandardsupport packagedt should implement
any additionalstandardpackageghat arerelevant to thesystemenvironment. Itmay implement additional
packageshat are notlefined inthis specification. Packages the device tredn the pathfrom the root of the
device tree to any package that campenedwith open-dev shall conform to the rules given in 3.6.1.

46

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

— A plug-in deviceshall have a standaf@Code programpackaged according to the rulis the particular
expansiorbuswith which that device is usedThat standardCodeprogram shalldentify the devicewith at
least a hame” property It shall comply to any additional requirements imposed by the specification describing
the application of Open Firmware to the expansion bus in question. It should implemstaradgrdpackages
that are relevant to the particular device.

5.2 FCode evaluator

A standardFCode evaluatorshall behave as described §2.1 in processing thieyte codesassociated with an
FCode programand shall implement the setle€ode functiongs described in 5.3.

5.2.1 FCode evaluation sequence

Once invoked, thé-Code evaluatorshall set theinternal statevariablefcode-endto falseand shallrepeat the
following sequence of operations uritibde-ends true at the beginning of the sequence:

a) Read the neXtCode# denoting arfFCode numberfrom the currenECode program.
b) Evaluate thé&Code functiorassociated with that FCode number.

The details of the readingrocess inthe first stepare bus-dependenand arespecified in related documents
descriling the application of this standard to particubauses. AnFCode# consists of either 1 or Bytes, as
specified in 5.2.2.

The FCode evaluatohastwo states, “interpretation stateind “compilation state”, determining theay that it
evaluates garticularFCode functionThe execution of certaifrCode functions causésansitionsbetween these
two states.

The details of step b) are as follows:

1) If the FCode function has explicit “FCode evaluation” semantics, perform the
FCode function's “FCode evaluation” semantics.
2) Otherwise,
i) Ifin interpretation state, perform the FCode function's execution semantics.
if) Otherwise (i.e., in compilation state), append the FCode function's execution
semantics to the current definition.

Subclause 5.3 defines the association between particular FCode numbers and their corresponding FCode functions.

NOTE—The behavior for some FCode functions includes reading FCode Diytess.some ofhe bytes in an FCode program
are not read directly by the FCode evaluator but by those FCode functions instead.

5.2.2 Encodings of in-line data

Thefollowing data formats arased to encodECode programsAt the toplevel, an FCodg@rogram consists of a
sequence dfCode#. Certain individuaFCode functiong@refollowed byadditionalbytes inthe sequence dbytes
representing th&Codeprogram. Those functionsre recognized during thieCode evaluation procesand the
bytes that follow are readfrom the FCode program andused as arguments to conttble interpretation or
compilation of the associated function. The encoding of such following bytes are described below.

In the following descriptionsthe left-mostbyte in aprinted sequence correspondsttee byte that appears first
(either chronologically earlier or at a lower memory address, whichever is applicable3équbace dbytes con-
stituting theFCodeprogram, and so ofnom left toright. For binary valueshat arerepresented by motéan one
byte, bytes ofyreater significance precede those of lesser significanteeiiRCodeprogram (i.e.pig-endianbyte
ordering).

47

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

5.2.2.1 FCode#

Either
byte (0x00 or 0x10 .. OXFF) EncodesF@ode numbeless than 0x100.
or
byte (0x01.. 0x0f) byte (0x00 .. OXFF) Encodes an FCode number greater than or equal to 0x100.

5.2.2.2 FCode-offset

Either

byte Encodes an 8-bit signed (two's complement) offset.
or

byte.high byte.low Encodes a 16-bit signed (two's complement) offset.

A conditional or looping control transfer is represented by a p&Cofle functionsAn FCode-offsespecifies the
number ofbytes inthe FCodeprogrambetween twacorresponding components of a contitol construct. The
offset is calculated as the number of FCode bytes from the first byte of the offsebyte just after the “target” of
the control transfer. Aositive offsetcorresponds to a transfer of control in tfegward” (towardsthe end of the
FCodeprogram) directionand anegativeoffset corresponds to the “backward” (towards the beginning of the
FCode program) direction.

The following control transfer pairs are meaningful, with..“ ” representing an arbitrary sequenceFafode
bytes:

FCode control transfer pair Example source construct
b(<mark) ... bbranch FCode-offset begin ... again
b(<mark) ... Db?branch FCode-offset begin ... until

N N
T B
bbranch FCode-offset ... b(>resolve) .. else .. then
b?branch FCode-offset ... b(>resolve) if then
N N
B T
b(do) FCode-offsetl ... b(loop) FCode-offset2 do ... loop
b(do) FCode-offsetl ... b(+loop) FCode-offset2 do ... +loop
b(?do) FCode-offsetl ... b(loop) FCode-offset2 ?2do ... loop
b(?do) FCode-offsetl ... b(+loop) FCode-offset2 ?2do ... +loop
N N
B1 N A Tl
T2 B2

The markerdB andT showthe “branch” and “targetfocations used fothe calculation of thealue of FCode-
offset Thevalue isthe signed number ¢fCode bytes betwedd and T (positive if B is beforeT). BY/T1 are for
FCode-offsetlatndB2/T2 are forFCode-offset2

NOTE—On some devices, FCode prograamns stored with “gaps” betweanccessive FCode bytes. For example, &&ubde
byte might be stored ithe least significanbyte of aseparate quadlet, in which case it mightneeessary to adibur to the
address to advance to the next FCode byte. This does notth&exticulation of akRCode-offset-the offset is in terms of the
number of FCode bytes, independent of how those bytes are addressed.

48

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

The offset size (whether of 8 bits or 16 bits) is establishégeabeginning of th&Codeprogram by the particular
start code that begins theFCodeprogram.versionl setsthe offset size to 8 bitsand the other startodes

(start0O , startl , start2 , andstart4) set theoffsetsize to 16 bits. Theffsetsize may bechanged from

8 bits to 16 bits by executingffset16

In most case¢the exceptionsrebbranch andb?branch in interpretation state), theCode evaluatomeeds
only the sign of theoffset, not its numerical value. In these cagbg value ofthe offset is essentiallyedundant
because contrdtansfers are represented by paird@Glode functions (@ranching functiorand its target). The
offset indicatesthe distancebetweenthe branch and its targdiut that information can beerivedduring the
FCode evaluation process withauteding theoffset value. However, standardFCodeprograms are required to
have numerically correct offsets (as described in the above paragraph) for compatibility with existing practice.

5.2.2.3 FCode-num32
byte.high byte.highmid byte.lowmid byte.low Encodes a 32-bit integer
5.2.2.4 FCode-string
byte.count byte.stringl ... byte.stringn Encodes a text string. The first byte is the length of
the string (0 to 255 bytes), not including the count
byte. Subsequent bytes are the bytes of the string.
5.2.2.5 FCode-header
The FCode-headedatatype appearonly atthe beginning of a-Code programfollowing one ofthe functions
versionl , start0 , startl , start2 , orstart4 . It contains information abouhe FCodeprogram as a
whole. That information igprovided forthe benefit ofexternalsoftwarethat may wish tocharacterize th&Code

program. A standard FCode evaluator is permitted to skip and igndr€tue-heademformation, or to use it to
verify, in an implementation-dependent manner, that the FCode program is intact.

Byte | Name Description

1 format The value 0x08 in this field indicates that this FQwdgram is intended to
operate with boofirmware that conplies with thedevice intefaceportion of
this standard. The values 0x09 thghOxFF are reserved for future revisions
of this standard. Values 0x00 thghuOx07 indicate that this FCogeogram
is intended to perate with boot firmware that does not qéynwith this
standard.

2 checksum-fgh High byte of the bogl checksum.

Checksum is the doublet size sum of tleb of theprogram bog (i.e.,
excludirg the header), calculated ugitwo's conplement addition and
ignoring overflow.

3 checksum-low Low yite of the bodg checksum.

4 lergth-high Most sgnificant byte of theprogram lergth.

Program lergth is thequadlet size number ofybes in theprogram, includirg
both the bod and the header.

5 lergth-high-middle High middle lyte of theprogram lergth.
6 lergth-low-middle Low middle lgte of theprogram lergth.
7 lergth-low Least ginificant byte of theprogram lergth.

5.3 FCode functions

The following subclause specifthe set of predefineBCode functionsand theirassociatedCode numbersThe
evaluation of airCode programmay create additional FCode functions and associate them with FCode numbers.

The following subclauses givéhe namesFCodenumbers,stack diagramsand brief descriptions of predefined
FCode functions. The complete semantics of these FCode functions are specified in annex A.

49

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

5.3.1 FCode numbers (FCodes)

FCode numbergsometimes callefCode3 arevalues between 0x000fnd OXOFFF, inclusive. FCode numbers
between0x00 and OxFF, inclusive, are representedR@ode programsy singlebytes;all otherFCode numbers
are represented by pairs lojtes,with the high-orderbyte first. The FCode numbersdetween0x01 and OxOF,
inclusive, are not used, thus eliminating @mbiguity betweerthe one-byteand two-byte forms that would
otherwise result. Anotheray tolook atthis is to think of thesingle-byte code®x01 through OxOF a%scape”
codes that are followed by another byte.

A summary of assigned FCode numbers is given in annex G.
5.3.1.1 System-defined FCode numbers

System-defined=Code functionsare predefined by thBrmware systemand thus areavailable to any-Code
program They havé-Code number@ the range 0x0000 through Ox07FF, inclusive.

5.3.1.1.1 Historical FCode numbers

Historical FCode numbers correspond to FCode functions that adefireéd bythis standardputthat are ohave
been used bifCode evaluatorshatpredate this standard. These numbergeserved fothe benefit of those pre-
existingsystemsand are noavailable for reassignment by future revisionshi$ standard. The historic&ICode
numbers are interspersed within the range 0x000 through Ox2FF.

The historical FCode numbers are as follows:

OxAl convert

0xB3 set-token

0xB4 set-table

OxBF b(code)

OxFE 4-byte-id

0x101 dma-alloc
0x104 memmap

0x106 >physical

Ox10F my-params
0x118 driver

0x123 group-code
0x156 frame-buffer-busy?
0x170-17C fbl routines
0x190-0x196 Obsolete VMEDbus support
0x1A0 return-buffer
Ox1A1 xmit-packet
0x1A2 poll-packet
0x210 processor-type
0x211 firmware-version
0x212 fcode-version
0x229 adr-mask

0x238 probe

0x239 probe-virtual

These FCode numbeasereserved fothe benefit of pre-existing-Code systemand shall not besed except for
the purpose of compatibility with such pre-existing systems.

50

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

5.3.1.1.2 Defined FCode numbers

Defined FCode numbers correspond to FCode functions specififdsbgtandardDefined FCode numbers are
interspersed within the range 0x000 through Ox5FF.

5.3.1.1.3 Reserved FCode numbers

Reserved FCodeumbers ar¢hose in theange 0x10 througbBx5FFthat are neithedefined inthis standard nor
listed in 5.3.1.1.1These FCode numbers are reserved for assignment by future versions of this standard.

5.3.1.1.4 Vendor-unique FCode numbers

Vendor-uniqgue FCode numbegse all those in therange 0x600 through Ox7FF. TheB€ode numbers are
reserved for vendor-specific use wiihilt-in devicesandwill not be assigned by this standard or futuegsions
thereof.

A standard FCode program shall not use vendor-unique FCode numbers.

NOTE—It is generally preferable to provide vendor-unique enhancementsforrthef packagesvith methods, rather than as
vendor-unique FCode functions.

5.3.1.2 Program-defined FCode numbers

Within a particular=Code programnewFCode functionsnay be createdndassigned td-Code numberé the
range 0x0800 througBxOFFF, inclusive. The assignment persists wihibg particular-FCodeprogram is being
evaluated and becomes invalid thereafter.

The program-definedFCodenumber space is private toparticular FCodeprogram; eacl-Code pogram may
reuse theseodeswithout conflicting with othef~Codeprograms. Functions defineslithin an FCodeprogram
may be exported for external use via another mechanism that does not involve FCode numbers.

5.3.1.3 Undefined FCode numbers

All FCode numbers$or which an implementatiohas not assignedspecific functionshall beassociated with the
ferror function.

5.3.2 Forth FCode functions
5.3.2.1 Standard Forth FCode functions

Thefollowing FCode functionhave behaviors identical to AN rth words (as specified by ANSI X3.215-1994)
of the same names. They perform basic functions in the Forth programming language:

dup (x--xx) 0x47 Duplicate the top item on the stack.

2dup (xIx2--x1x2x1x2) 0x53 Duplicate the top two items on the stack.

?2dup (x--0]xx) 0x50 Duplicate top stack item if it is nonzero.

over (xIx2--x1x2x1) 0x48 Copy second stack item to top of stack.

2over (X1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2) 0x54 Copy second pair of stack items to top of stack.
pick (xu ... xIxOu--xu ... X1 x0xu) Ox4E Copyuth stack item to top of stack.

tuck (x1x2--x2x1x2) 0x4C Copy top stack item underneath the second stack item.
drop (x--) 0x46 Remove top item from the stack.

2drop (x1x2--) 0x52 Remove top two items from the stack.

nip (x1x2--x2) 0x4D Remove the second stack item.

roll (xu..x1x0u--xu-1...x1x0xu) Ox4F Rotatel stack items as shown.

51

IEEE
Std 1275-1994

(continued)

rot (xIx2x3--x2x3x1) Ox4A
-rot (xIx2x3--x3x1x2) Ox4B
2rot (X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) 0x56

swap (x1x2--x2x1) 0x49
2swap (X1 x2 x3 x4 -- x3 x4 x1x2) 0x55
>r (x--) (R:i--x) 0x30
r> (--x) (Rix--) 0x31
r@ (-x) (Rix--x) 0x32
depth (--u) 0x51
+ (nulnu2--sum) Ox1E
- (nul nu2 -- diff) Ox1F
* (nul nu2 --prod) 0x20
/ (n1n2--quot) 0x21
mod (n1n2--rem) 0x22
/mod (n1n2--remquot) Ox2A
u/mod (ulu2-uremuquot) 0x2B
abs (n--u) 0x2D
negate (nl1--n2) 0x2C
max (n1n2--nln2) Ox2F
min (n1n2--nln2) Ox2E
bounds (ncnt--n+cntn) OxAC
Ishift (xLu--x2) 0x27
rshift (xLu--x2) 0x28
2* (x1--x2) 0x59
2/ (x1--x2) 0x57
and (x1x2--x3) 0x23
or (x1x2--x3) 0x24
xor (x1x2--x3) 0x25
invert (x1--x2) 0x26
d+ (d1d2--d.sum) 0xD8
d- (d1d2 -- d.diff) 0xD9
um* (ulu2--d.prod) 0xD4
um/mod (ud u--uremuquot) 0xD5
char+ (addrl -- addr2) 0x62
cell+ (addrl -- addr2) 0x65
chars (nul--nu2) 0x66
cells (nul--nu2) 0x69
aligned (nl--nlla-addr) OxAE
@ (a-addr -- x) 0x6D
2@ (a-addr -- x1 x2) 0x76
c@ (addr -- byte) 0x71
! (x a-addr --) 0x72
2! (x1 x2 a-addr --) Ox77
+! (nu a-addr --) 0x6C
c! (byte addr --) 0x75
move (src-addr dest-addr len --) 0x78
fill (‘addr len byte --) 0x79
key? (-- pressed?) 0x8D
key (--char) Ox8E
expect (addrlen --) O0x8A
span (--a-addr) 0x88
bl (--0x20) 0xA9

52

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Rotate top three stack items as shown.
Rotate top three stack items as shown.
Rotate three pairs of stack items as shown.
Exchange top two stack items.
Exchange top two pairs of stack items.
Move top stack item to the return stack.
Move top return stack item to the stack.
Copy top return stack item to the stack.
Return count of items on the stack.
Adaulto nu2
Subtraciu2 from nul
Multiplpul by nu2
Dividel by n2; return quotient.
Dividael by n2; return remainder.
Divide n1 by n2; return remainder and quotient.
Dividel by n2, all unsigned.
Return absolute valuerof
Return negation iof.
Return greatemdfandn2.
Return lessemdfandn2.
Prepare arguments fdo or ?do loop.
Shifk1 left by u bit-places. Zero-fill low bits.
Shifk1 right byu bit-places. Zero-fill high bits.
Shifix1 left by one bit-place. Zero-fill low bit.
Shifix1 right by one bit-place. High bit unchanged.
Return bitwise logical “and” »t andx2.
Return bitwise logical “inclusive-or” xt andx2.
Return bitwise logical “exclusive-or”ydf andx2.
Invert all bits ofl.
Add d1to d2 giving double-numbed.sum
Subtrad? from d1giving double-number differenckdiff.
Unsigned multiply with double number product.
Divide unsigned double nunuiady u.
Incremesnddrl by the value ofc .
Incremeenddrl by the value ofn .
Multiplyhul by the value ofc .
Multiplyhul by the value ofn .
Increasenl as necessary to give valid address boundary.
Fetch itemfrom cell ata-addr.
Fetch cell pair fravaddr.
Fetdbytefrom addr.
Store itemto cell ata-addr.
Store cell pairaabddr.
Addu to cell ata-addr.
Storeyteto addr.
Copylen bytes fromsrc-addrto dest-addr
Sén bytes beginning addr to the valuebyte
Retutrue if an input character available.
Read a character from the console input device.
Get edited input line, storing it atdr.
variable holding number of characters receivedepect .
ASCII code for space (blank) character.

CORE REQUIREMENTS AND PRACTICES

IEEE
Std 1275-1994

(continued)

emit (char --) Ox8F Display the given ASCII character.

type (text-str text-len --) 0x90 Displatext-lencharacters beginning at addréss-str.
cr (--) 0x92 Subsequent output goes to the next line.

count (pstr --str len) 0x84 Unpack a counted string to a text string.

base (--a-addr) OxAO variable containing the number-conversion radix.
. (nu--) 0x9D Display number (and trailing space).

u. (u--) 0x9B Display an unsigned number with a trailing space.
I (nsize --) Ox9E Display a signed number, right-justified.

u.r (usize --) 0x9C Display an unsigned number, right-justified.

.S (e =) Ox9F Display entire stack contents, unchanged.

<# (-) 0x96 Initialize pictured numeric output conversion.

(udl--ud2) 0xC7 Convert a digit in pictured numeric output conversion.
#s (ud--00) 0xC8 Convert remaining digits in pictured numeric output.
#> (ud--strlen) 0xC9 End pictured numeric output conversion.

hold (char--) 0x95 Addhar in pictured numeric output conversion.
sign (n--) 0x98 Ifn < 0, insert “-” in pictured numeric output.

< (n1n2--less?) O0x3A Returntrue if nlis less tham2.

<> (x1x2 -- not-equal?) 0x3D Retutrue if x1is not equal tx2.

= (x1x2 --equal?) 0x3C Retutrue if x1is equal tox2.

> (n1n2 -- greater?) 0x3B Retutmue if nlis greater than2.

within ('n min max -- min<k=n<max?) 0x45 Returne if nis betweermminandmax-1, inclusive.
0< (n--less-than-0?) 0x36 Retunue if nis less than zero.

0<> (n-- not-equal-to-0?) 0x35 Retutmue if nis not equal to zero.

0= (nu|flag -- equal-to-0?) 0x34 Retumue if nulflagis equal to zero.

0> (n -- greater-than-0?) 0x38 Returoe if nis greater than zero.

u< (ul u2 -- unsigned-less?) 0x40 Rettnue if ulis less tham2, unsigned.

u> (ul u2 -- unsigned-greater?) Ox3E Retue if ulis greater than2, unsigned.

i (--index) (R:sys--sys) 0x19 Return current loop index value.

i (--index) (R:sys--sysPx1A Return next outer loop index value.

unloop (--) (R:sys--) 0x89 Discard loop control parameters.

evaluate (...strlen--???) OxCD Evaluate Forth text from the given string.

execute (.o Xt--227?) 0x1D Execute the command whose execution token is
exit (--) (R:sys--) 0x33 Exit from the currently executing command.

abort (=) (Rr..--) 0x216 Abort program execution; clear stacks.

catch (... xt--??? error-code | ??? false) 0x217 Execute command indicatedRbyurnthrow result.
throw (... error-code -- ??? error-code | ...) 0x218 Transfer bazd¢dh routine if error-codeis nonzero.
here (--addr) OXAD Return current dictionary pointer.

c, (byte --) 0xDO Compile a byte into the dictionary.

, (x--) 0xD3 Appendk to data space.

compile, (xt--) 0xDD Compile the behavior of the word givenxiy

state (--a-addr) 0xDC variable containingtrue if in compilation state.
>body (xt -- a-addr) 0x86 Convert execution token to data field address.

5.3.2.2 Other simple Forth FCode functions

Ic (--n) Ox5A
w (--n) 0x5B
/l (--n) 0x5C
/n (--n) 0x5D
ca+ (addrl index -- addr2) Ox5E
wa+ (addrl index -- addr2) Ox5F
la+ (addrl index -- addr2) 0x60

The number of address units to a byte: one.
The number of address units to a doublet: typically, two.
The number of address units to a quadlet: typically, four.
The number of address units in a cell.
Incremextdrl by indextimes the value oftc .
Incremexttdrl by indextimes the value afv .
Incremexttdrl by indextimes the value of .

53

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

(continued)

na+ (addrl index -- addr2) 0x61 Incremexttdrl by indextimes the value of .

wal+ (addrl -- addr2) 0x63 Incremeenddrl by the value ofw .

lal+ (addrl -- addr2) 0x64 Incremeenddrl by the value ofl .

Iw* (nul--nu2) 0x67 Multiplyhul by the value ofw .

N* (nul--nu2) 0x68 Multiplyhul by the value ofl .

w@ (waddr --w) Ox6F Fetch doubletfrom waddr.

w@ (waddr --n) 0x70 Fetch doublet fromaddr, sign-extended.

1@ (qaddr -- quad) Ox6E Fetch quadlet frgaddr.

w! (w waddr --) 0x74 Store doubletto waddr.

I! (quad gaddr --) 0x73 Store quadleddr.

w, (w--) 0xD1 Compile a doubletinto the dictionary, doublet-aligned).
I, (quad --) 0xD2 Compile a quadlet into the dictionary, doublet-aligned).
off (a-addr --) 0x6B Storfalse to cell at a-addr.

on (a-addr --) Ox6A Storetrue to cell at a-addr.

u# (ul--u2) 0x99 Convert a digit in pictured numeric output conversion.
u#s (u--0) 0x9A Convert remaining digits in pictured numeric output.
u#> (u--strlen) 0x97 End pictured numeric output conversion.

comp (addrl addr2 len -- 2diff?Qx7A Compare two arrays of lengign.

Ibsplit (quad -- b.lo b2 b3 b4.hi) OX7E Split a quadlet into four bytes.

Iwsplit (quad --wl.low2.hi) O0x7C Split a quadlet into two doublets.

whbsplit (w--bl.lo b2.hi) OxXAF Split a doubletvinto two bytes.

bljoin (bl.lo b2 b3 b4.hi -- quad) Ox7F Join four bytes to form a quadlet.

bwjoin (b.lo b.hi--w) 0xBO Join two bytes to form a doubdet

wljoin (w.lo w.hi -- quad) 0x7D Join two doublets to form a quadlet.

whbflip (wl--w2) 0x80 Swap the bytes within a doublet.

whbflips (waddrlen --) 0x236 Swap the bytes within each doublet in the given region.
Ibflip (gl1--92) 0x227 Reverse the bytes within a quadlet.

Ibflips (gaddr len --) 0x228 Reverse the bytes within each quadlet in the given region.
Iwflip (gl1--92) 0x226 Swap the doublets within a quadlet.

Iwflips (gaddr len --) 0x237 Swap the doublets within each quadlet in the given region.
u2/ (x1--x2) 0x58 Shifix1 right by one bit-place. Zero-fill high bit.
between ('n min max -- min<=n<=max?) 0x44 Returne if nis between min and max, inclusive.
>= (n1 n2 -- greater-or-equal?) 0x42 Rettmure if nlis greater than or equal n@.

<= (nln2 -- less-or-equal?) 0x43 Retarme if nlis less than or equal t@.

O<= ('n -- less-or-equal-to-0?) 0x37 Returne if nis less than or equal to zero.

0>= ('n -- greater-or-equal-to-0?) 0x39 Retarwe if nis greater than or equal to zero.

u<= (ul u2 -- unsigned-less-or-equal?) O0x3F Retura if ulless or equal ta2, unsigned.

u>= (ul u2 -- unsigned-greater-or-equal?) 0x41 Retwa if ulgreater or equal to2, unsigned.

>>a (xLu--x2) 0x29 Arithmetic shiftx1 right byu bit-places.

body> (a-addr -- xt) 0x85 Convert data field address to execution token.

noop (-) 0x7B Do nothing.

bell (-- 0x07) OxAB ASCII code for “bell” character.

bs (-- 0x08) OXAA ASCII code for “backspace” character.

#line (--a-addr) 0x94 variable holding the output line number.

#out (--a-addr) 0x93 variable holding the output column number.

pack (strlen addr -- pstr) 0x83 Pack a text string into a counted string.

Icc (charl -- char2) 0x82 Convert ASClicharlto lowercase.

upc (charl -- char2) 0x81 Convert ASClicharlto uppercase.

-1 (--1) 0xA4 Constant —1.

0 (--0) OxA5 Constant 0.

1 (-1) 0xA6 Constant 1.

2 (-2) 0xA7 Constant 2.

54

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
(continued)

3 (--3) 0xA8 Constant 3.

(cr (--) 0x91 Output the carriage-return character, 0x0OD.

$number (addr len -- true | n false JxA2 Convert a string to a number.

digit (char base -- digit true | char falseDXA3 Convert a character to a digit in the given base.

$find (name-str name-len -- xt true | name-str name-len false)

0xCB Find the command namedme stringn the dictionary.
alloc-mem (len -- a-addr) 0x8B Allocatken bytes of memory.
free-mem (a-addrlen --) 0x8C Free memory allocatecaigc-mem .

5.3.3 FCode implementation functions

TheseFCode functiongorrespond only indirectly torth words (most otheilFCode functions correspond directly
to identically named Forth words). In genethk names of thegeCode functions daot appear ifFCode source
Instead, certair-Code source construcsse translated by tokenizerprogram intosequences of thedeCode
functions. Such constructs are indicated in glossary entries by the “T” type code (see A.1.2.3).

5.3.3.1 Defining new FCode functions
Program-definedrCode functionsire created by executing a sequence of FCode functions of the following form:
[instance] token-typefunction-type

If present,instance modifies the behavior of thdollowing FCode function definition sthat it allocates
instance-specific data storage insteadjlobal data storageinstance only applies to FCode functiortbat
allocate data storage, specificalbgbuffer:) , b(defer) |, b(value) , b(variable)

Token-typepne of theFCode functionsiew-token , named-token , or external-token , establishes the
new function'sFCode numberand pasibly its externallyvisible name. Thetoken-typeportion of theFCode
program includes anFCode-string(except inthe case ofnew-token) and anFCode# Any program-defined
FCode function may be executed fravithin the FCodeprogram thatefinesit, but only those functiongith an
externally visible name can be called from outside the FCode program (e.gbcalitmethod).

Function-type,one of theFCode functionsb(:) , b(buffer:) , b(constant) , b(create) , b(defer)
b(field) , b(value) , orb(variable) , establishes the general behavior of the new function.

instance (-) 0xCO Mark next defining word as instance-specific.

new-token (F: /FCode#/ --) 0xB5 Create a new unnamed FCode function.

named-token (F: /FCode-string FCode#/ --) 0xB6 Create a new possibly named FCode function.
external-token (F: /FCode-string FCode#/ --)
OxCA Create a new named FCode function.

b(;) (--) 0xC2 End an FCode colon definition.

b(:) (--) 0xB7 Defines type of new FCode function as “colon definition”.
(E:...--???)

b(buffer:) (size --) 0xBD Defines type of new FCode functiorbafer:
(E: -- a-addr)

b(constant) (nl1--) OxBA Defines type of new FCode function@mstant

(E:--nl1)

b(create) (--) 0xBB Defines type of new FCode functioncasate word.
(E: -- a-addr)

b(defer) (--) 0xBC Defines type of new FCode functiondefer word.
(E:...--?2??)

(continued)

55

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
b(field) (offset size -- offset+size) OXBE Defines type of new FCode functifields .
(E: addr -- addr+offset)
b(value) (x--) 0xB8 Defines type of new FCode functiorvatue .
(E:--x)
b(variable) (--) 0xB9 Defines type of new FCode functionvasiable
(E: -- a-addr)
(is-user-word) (name-str name-len xt --) 0x214 Create a new named user interface command.
(E:...--?2??)
get-token (fcode# -- xt immediate? pxDA Convert FCode number to function execution token.
set-token (xt immediate? fcode# --) OxDB Assign FCode number to existing function.

5.3.3.2 Literals

Each of these functions reads a literal value fronFtbede progranand pushes the value on tegta stack

b(lit) (--nl1) 0x10 Numeric literal FCode. Followed Bgode-num32
b() (-- xt)Ox11lFunction literal FCode. Followed by FCode#.'
b(") (--strlen) 0x12 String literal FCode. Followed Bgode-string

5.3.3.3 Controling value sand defer s

b(to) sets the value afalue anddefer functions, reading thECode#of the functiorwhose value is to be set
from theFCode program

behavior (defer-xt -- contents-xt) OXDE Retrieve execution behaviordgfar word.
b(to) (params --) 0xC3 FCode for settinglue s and defer s. Followed byFCode#

5.3.3.4 Control flow

In various combinations, these functions implement control structures, such as condiimhalsps. Many of
these functions are similar most respects to AN&orth words (as specified by ANSI X3.215-1994), bilneir
behavioral descriptions account five fact that they read FCode-offsetgrom the FCode programduring FCode
evaluation

offsetl16 (--) OxCC Makes subsequemCode-offsetsise 16-bit (not 8-bit) form.
bbranch (--) 0x13 Unconditional branch FCode. FollowedR§yode-offset
b?branch (continue? --) 0x14 Conditional branch FCode. Followe&Gpde-offset
b(<mark) (--) 0xB1 Target of backward branches.

b(>resolve) (--) 0xB2 Target of forward branches.

b(loop) (--) 0x15 End FCoddo ...loop . Followed by FCode-offset
b(+loop) (delta--) 0x16 End FCoddp ... +loop . Followed by FCode-offset

b(do) (limit start --) 0x17 Begin FCoddo ...loop . Followed by FCode-offset
b(?do) (limit start --) 0x18 Begin FCodedo ...loop . Followed by FCode-offset
b(leave) (-) 0x1B Exit from ado ...loop .

b(case) (sel --sel) 0xC4 Beginease (multiple selection) statement.

b(endcase) (sel | <nothing> --) 0xC5 Endaase (multiple selection) statement.

b(of) (sel of-val -- sel | <nothing>) 0x1C FCode &ir in case statement. Followed byCode-offset
b(endof) (--) 0xC6 FCode foendof incase statement. Followed byCode-offset

5.3.4 Package access

These functions manage the interfdmweenpackages allowing packages to call each othermsthodsand
inspect each othergroperties

56

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

5.3.4.1 Openl/close packages
These functions findgpen andclosepackages

find-package (. name-str name-len -- false | phandle true)

0x204 Locate the support package nameddiye string
open-package (arg-str arg-len phandle -- ihandle | 0)

0x205 Open the package indicatedphandle
$open-package (arg-str arg-len name-str name-len -- ihandle | 0)

0x20F Open the support package nameddme string

close-package (ihandle --) 0x206 Close the specified package instance.
my-self (--ihandle) 0x203 Return thikandleof the current instance.
my-parent (--ihandle) 0x20A Return théhandleof the parent of the current instance.

ihandle>phandle (ihandle -- phandle) 0x20B Return tplkeandlefor the indicatedhandle
next-property (previous-str previous-len phandle -- false | name-str name-len true)
0x23D Return th@ameof the property followingreviousof phandle
peer (phandle -- phandle.sibling) 0x23C Return the phandle of the next sibling node.
child (phandle.parent -- phandle.child) 0x23B Return the phandle of the first child node of parent.

5.3.4.2 Call methods from other packages
These functions find and executethoddrom otherpackages

find-method (method-str method-len phandle -- false | xt true)

0x207 Find the method namatkthod-stringn the packagphandle
call-package (...xtihandle -- ???) 0x208 Execute the metkioglithin the instancéhandle
$call-method (... method-str method-len ihandle -- ??2?)

0x20E Execute the method nanredthod-stringn the instancéhandle
$call-parent (... method-str method-len -- ???)

0x209 Execute the method nanredthod-stringn the parent instance.

5.3.4.3 Get local arguments

These functions return information about the current instance:

my-address (-- phys.lo ...) 0x102 Return low component(s) of device’s physical address.
my-space (-- phys.hi) 0x103 Return high component of device’s physical address.
my-unit (-- phys.lo ... phys.hi) 0x20D Return the unit address of the current instance.
my-args (-- arg-str arg-len) 0x202 Return the instance-argument string for this instance.
left-parse-string (str len char -- R-str R-len L-str L-len)

0x240 Split the string at first occurrence of delimikar.
parse-2int (strlen--val.lovalhi) O0x11B Convert a “hi,lo” string into a pair of values.

5.3.4.4 Mapping tools
These functions are shorthand versions of common sequences:

map-low (phys.lo ... size --virt) 0x130 Map the specified region; return a virtual address.
free-virtual (virt size --) 0x105 Destroy mapping analdtress ” property.

57

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

535 Property management
5.3.5.1 Property array encoding
These functions encode various data typesgrip-encoded-arraysuitable forproperty values

encode-int ('n-- prop-addr prop-len) 0x111 Encode a number into a prop-encoded-array.
encode-string (str len -- prop-addr prop-len)

0x114 Encode a string into a prop-encoded-array.
encode-bytes (data-addr data-len -- prop-addr prop-len)

0x115 Encode a byte array into a prop-encoded-array.
encode-phys (phys.lo ... phys.hi -- prop-addr prop-len)

0x113 Encode a unit address into a prop-encoded-array.
encode+ (prop-addrl prop-lenl prop-addr2 prop-len2 -- prop-addr3 prop-len3)

0x112 Concatenate two prop-encoded-arrays into a single array.
sbus-intr>cpu (sbus-intr# -- cpu-intr#) 0x131 Converts SBus interrupt level to CPU interrupt level.

5.3.5.2 Property array decoding
These functions decode various data types fioop-encoded-arrag.

decode-int (prop-addrl prop-lenl -- prop-addr2 prop-len2 n)

0x21B Decode a number from a prop-encoded-array.
decode-phys (prop-addrl prop-lenl -- prop-addr2 prop-len2 phys.lo ... phys.hi)

0x128 Decode a unit address from a prop-encoded-array.
decode-string (prop-addrl prop-lenl -- prop-addr2 prop-len2 str len))

0x21C Decode a string from a prop-encoded-array.

5.3.5.3 Property declaration

These functions create, deletand modify properties in theactive packageproperty is the general-purpose
function for creating propertiedelete-property deletes groperty. The other functions ithis subclause are
space-saving words for a common property, with behavior identidhktose ofproperty with the indicated
name string.

property (prop-addr prop-len name-str name-len --)
0x110 Create a new property with the given name and value.

delete-property (name-str name-len --) Ox21E Delete the named property acthwe package
device-name (strlen--) 0x201 Create thedme” property; value is indicated string.
device-type (strlen--) Ox11A Create tevice_type " property; value is indicated string.
reg (phys.lo ... phys.hi size --) 0x116 Create theg*” property with the given values.

model (strlen--) 0x119 Create thenbdel ” property; value is indicated string.

5.3.5.4 Property value access

The following functions retrievproperty values

get-package-property (' name-str name-len phandle -- true | prop-addr prop-len false)
0x21F Return value faname stringproperty in packagphandle
get-inherited-property (name-str name-len -- true | prop-addr prop-len false)

0x21D Return value for given property in the current instance or its parents.
get-my-property (name-str name-len -- true | prop-addr prop-len false)
0x21A Return value for given property in this package.

58

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

5.3.6 Display device management

These functions assist in the implementatiorcafisole display devices, devices identifiedthg “display ~
device-typeproperty.

5.3.6.1 Terminal emulator routines

The terminal emulator implements &NSI X3.64 terminal using thealisplay device driverfor low-level screen
manipulation operations.

The followingvalue s are used and set by the terminal emulator:

line# (--line#) 0x152 Return the current cursor line number.

column# (-- column#) 0x153 Return the current cursor column number.
inverse? (-- white-on-black?) 0x154 Indicates how to paint characters.
inverse-screen? (-- black?) 0x155 Indicates how to paint the background.

#lines (--rows) 0x150 Return number of lines of text in text window.
#columns (-- columns)) 0x151 Return number of columns of text in text window.

The terminal emulator uses the followidgfer words to access display device driver routines:

draw-character (char --) 0x157 Draw a character at the current cursor position.
reset-screen (--) 0x158 Perform frame-buffer device initialization.
toggle-cursor (--) 0x159 Toggle the state of the text cursor.

erase-screen (--) 0x15A Clear the screen.

blink-screen (-) 0x15B Flash the screen.

invert-screen (--) 0x15C Exchange the foreground and background colors.

insert-characters (n--) 0x15D Insert n spaces to the right of the cursor.
delete-characters (n--) Ox15E Deleta characters to the right of the cursor.
insert-lines (n-) 0x15F Inserh blank lines at and below the cursor line.
delete-lines (n--) 0x160 Deleta lines at and below the cursor line.
draw-logo (line# addr width height --) 0x161 Draw (at line#) the logo stored at locatidn

5.3.6.2 Frame-buffer support routines

These functions control the character fased to display characteiset-font may be usedvith the system-
provided font described by thiefault-font or with a font provided by thECode program

default-font (-- addr width height advance min-char #glyphs)

0x16A Return the font parameters for the default system font.
set-font (‘addr width height advance min-char #glyphs --)

0x16B Set the current font as specified.
>font (char -- addr) 0x16E Return beginning addressffarin the current font.

The followingvalue s are used internally by both the 1-bit and the 8-bit frame-buffer support routines.

frame-buffer-adr (--addr) 0x162 Return current frame-buffer virtual address.
screen-height (-- height) 0x163 Return totakightof the display in pixels.
screen-width (-- width) 0x164 Return totatidth of the display in pixels.
window-top (-- border-height) 0x165 Return window top border in pixels.

window-left (-- border-width) 0x166 Return window left border in pixels.

char-height (-- height) 0x16C Return theeightof a font character in pixels.
char-width (-- width) 0x16D Return thevidth of a font character in pixels.
fontbytes (-- bytes) 0x16F Return interval between entries in the font table.

59

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

5.3.6.3 Display device support
This subclause defines support routines usétiode frame-buffer packages

5.3.6.3.1 Frame-buffer package interface

is-install (xt--) 0x11C Createpen and other methods for this display device.
is-remove (xt--) 0x11D Createlose method for this display device.
is-selftest (xt--) Ox11E Creatselftest method for this display device.

5.3.6.3.2 Generic one-bit frame-buffer support (optional)
See annex H.
5.3.6.3.3 Generic eight-bit frame-buffer support

The ‘b8 " genericframe-buffer support packagmplements thalisplaydevice interfacdor framebufferswith
8 bits per pixel.

fb8-install (‘width height #columns #lines --) 0x18B Install all built-in generic 8-bit frame-buffer routines.
fb8-draw-character (char --) 0x180 Implement théd8 ” draw-character function.
fb8-reset-screen (--) 0x181 Implement thefb8 ” reset-screen function.
fb8-toggle-cursor (--) 0x182 Implement thefth8 ” toggle-cursor function.
fb8-erase-screen (--) 0x183 Implement thefb8 ” erase-screen function.
fb8-blink-screen (--) 0x184 Implement thefb8 ” blink-screen function.
fb8-invert-screen (--) 0x185 Implement thefb8 ” invert-screen function.
fb8-insert-characters (n--) 0x186 Implement thefli8 ” insert-characters function
fb8-delete-characters (n--) 0x187 Implement thefli8 ” delete-characters function.
fb8-insert-lines (n--) 0x188 Implement thefli8 ” insert-lines function.
fb8-delete-lines (n--) 0x189 Implement thefli8 ” delete-lines function.
fb8-draw-logo (line# addr width height --) Ox18A Implement thetb8 ” draw-logo function.

5.3.7 Other FCode functions

5.3.7.1 Peek/poke

The following functions attempt aead or writeaccess at a possibigvalid address, returning féag indicating
whether or not an access error occurred:

cpeek (addr -- false | byte true) 0x220 Attempt to fetchlikataddr.
wpeek (waddr -- false | w true) 0x221 Attempt to fetch the doublatwaddr.
Ipeek (gaddr -- false | quad true) 0x222 Attempt to fetch the quadigidalr.
cpoke (byte addr -- okay?) 0x223 Attempt to store liygeto addr.
wpoke (w waddr -- okay?) 0x224 Attempt to store the douhiet waddr.
Ipoke (quad gaddr -- okay?) 0x225 Attempt to store the quadigaddr.

5.3.7.2 Device-register access

The following functions are used to access dekaggsters, providing a predictaldecess model ithe presence of
such effects as byte order differences across bus bridges, presence of write buffers, and so forth. Etalildatde

60

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Forth data-acceswordsc@ c! , @ and!, these wordsare guaranteed to read or write with a singbeess
operation.

rb@ (addr -- byte) 0x230 Fetch a byte from device registaddt.

w@ (waddr --w) 0x232 Fetch a doubietfrom device register avaddr.
r@ (gaddr -- quad) 0x234 Fetch a quadlet from device registgdatr.
rb! (byte addr --) 0x231 Store a byte to device registaddt

rw! (w waddr --) 0x233 Store a doubleto device register avaddr.

rl! (quad gaddr --) 0x235 Store a quadlet to device registgrdalr.
5.3.7.3 Time

These functions provide basic real-time measuremantsdelays. The accuracy of time values isystem-
dependent.

get-msecs (--n) 0x125 Return elapsed time in milliseconds.

ms (n--) 0x126 Delay for at leastmilliseconds.

alarm (xtn--) 0x213 Executet repeatedly at intervals afmilliseconds.
user-abort (e =) (Ri.--) 0x219 Aftealarm routine is finished, abort program execution.

5.3.7.4 System information

fcode-revision (--n) 0x87 Return revision level of FCode interface.
mac-address (-- mac-strmac-len) Ox1A4 Return a sequence of bytes containing network address.

5.3.7.5 FCode self-test

These functions are used primarily to implenmssittest methods

display-status (n--) 0x121 Display the results of a device self-test.
memory-test-suite (‘addr len -- fail? ') 0x122 Perform tests of memory, startiragidt for len bytes.

mask (--a-addr) 0x124 variable to control bits tested withmemory-test-suite
diagnostic-mode? (--diag?) 0x120 Ifrue , boot from diag sources; perform longer self-tests.

5.3.7.6 Start and end

These functions begin, endnd partitionFCode programsSpreadis the distance in address uniistween
consecutive bytes of the FCode program.

startO (--) O0xFO Begin program witepread0 followed byFCode-header.
startl (--) OxF1 Begin program witepreadl followed byFCode-header.
start2 (--) OxF2 Begin program witepread?2 followed byFCode-header.
start4 (--) OxF3 Begin program witepread4 followed byFCode-header.
versionl (--) OxFD Begin program witBpreadl followed byFCode-header.
end0 (--) 0x00 Cease evaluating this FCode program.

endl () OxFF Cease evaluating this FCode program.

ferror (--) OxFC Standard FCode number for undefined FCode functions.
suspend-fcode (--) 0x215 Pause FCode evaluation if desired; can resume later.
new-device (--) Ox11F Start new package as childhofive package
finish-device (-) 0x127 Finish this package; settive packageo parent.
byte-load (addr xt --) 0x23E Evaluate FCode beginning at loceidair.

set-args (arg-str arg-len unit-str unit-len --) 0x23F Set address and arguments of new device node.

61

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

5.4 Standard FCode program
54.1 Overall structure

A standard=Code program

— shall begin with thé&Code#for one of the following-Code functions
versionl ,start0 ,startl ,start2 , start4

— shall end with thé&Code#for one of the following FCode functions:
end0, endl

— may contain a sequence of ot ode#detween the beginning code and the ending code.
5.4.2 Usage rules

A standard=Code progranshall comply with all of the following rules.

— EachFCode#thatcorresponds to aRCode functiorthatreads from thé-Codeprogram shall béollowed by
the appropriate in-line data with tf@lowing exception: Ifthe FCode#is itselfthe in-line datdor someother
FCode function (for examplthe FCode#that follows b()), it shall not befollowed by additional in-line
data.'

— During FCode evaluationthe compilationand control flow stackeffectsshall balance throughout tleCode
program as a whole.

— Forall possible executiopaths, the contents of the stack shall be appropriate, aegacttion of an FCode
function, forthat FCode functionThe progranmay assuméhat themethodsof this program are callefdom
the outside with valid stack arguments, and that any external methods that are called perform according to their
specifications.

— Any external methods that are called from within the program shall be called with valid stack arguments.
— Ambiguous conditions or undefined parameter ranges of FCode functions or external methods shall be avoided.

62

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

6. Client interface

The client interfaceallows client programs(programs thahave beeroadedand executedunder the control of
Open Firmware) to make use of services provided by Open FirmiMageinterfaceconsists of a set of software
procedures and a mechanism for calling and passing arguments and results to and from those procedures.

6.1 General

The Open Firmwarelient interfacespecifieshe behavior of dirmware system sahat client programs(programs
that areloadedinto andexecute from RAM) begitheir execution with a predictable machine statel may use
various Open Firmware facilities. The client interfacensists of boththe specification ofthe machine
environment thaexists when the client program begiesgecutionand theset of serviceshat Open Firmware
provides for the program’s use.

6.1.1 Description

Client interface servicearethose servicethatOpen Firmware provides wient programs,includingdevice tree
access, memory allocation, mapping, console 1/0, mass storage and network 1/0, and other services.

Theclient execution environmeidt the machine state that exists when a client program begins execution.
6.1.2 Specification

In order to be compliant with the Open Firmwatient interface the boot firmware associated with enain CPU
deviceshall

— Implement the set otlient interface serviceslefined in this clause and provide the client execution
environmenspecified in this clause.

— Implement these standagystem nodeslopenprom , /options , /chosen , and“memory” (the node
whoseihandleis given by the value dEhosen 's “memory” property).

6.1.3 Warning

The services provided herein may cease to be availabledfi¢éié programdoes any of the following:
— Uses system memory not obtained fromahent interfacememory-allocation functions.

— Performs virtual-address-mapping operations, except by executing virtual-address-mapping client interface
routines which may be provided as system-dependent extensions to Open Firmware.

— Directly modifiesthe state of any hardwadevicethat is inuse bythe firmware (for examplethe console
device). The list of such devices is system-dependent.

— Directly modifiesthe state of certaiprocessor registerd.he list of such registers is processor-dependent.
Supplements to this document may specify such registers for particular processors.

6.2 Client program environment

The details of theclient execution environmemire ISA-dependenand arespecified in Open Firmware ISA-
specific supplements (see 2.1).

63

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

6.3 Client interface services
6.3.1 Access to the client interface functions

The Open Firmwarelient interface handleis a mechanism by which contrahd data are transferréebm a

client programto thefirmware, andsubsequentlyeturned,for the purpose of providinglient interface services
The data is transferred by means of an array of argumentseauliswhoseaddress is provided tine client

interface handler. The contentstbat array ispecified inthis clause, but the detailed mechanimtransferring

controlandfor providingthe address of the array to the client interface handlgesified inthe Open Firmware
supplement for each ISA (see 2.1).

The argument array consists of the following sequence of cells:

Cell Name Contents

service Address of a null-terminated stgigpecifying the client interface service.
N-args Number of ipput aguments to the client interface service.

N-returns Number of return values from the client interface service.

argl, ..., argN Input alguments to the client interface service.

retl, ..., retN Returned values from the client interface service.

The argumenservice is the address of a null-terminated strthgt specifieswhich firmware service is to be
invoked. The argumentd-args andN-returns specifythe number of calling arguments and retuatues;
they must agree with the number of arguments and return values expected by the psetidaaEach argument
argl throughargN is either represented literally in the argument array @it fit into acell) or is a pointer to
the actual argument (if it requires more stortdggn asingle cell); theeturnvaluesare represented similarly. The
form of these argumentnd returnvalues depends updhe particularserviceandmay beconstants, strings, data
structures, or other arbitrary data.

In addition to theetl throughretN valuesthat are returned in the array, the clignierface handler returns a
single value aspecified inthe Open Firmware supplemeot the appropriate 1SAsee2.1). Thatvalue indicates
whether the transfer of control to the Open Firmveareceeded or failed. the requestedervice is unavailable or

if the control transfer failed, the client interface handler returns the value —1; otherwise, it returns the value zero.

Client interfaceservicenames shall be drawfrom the character set “0&-Z a-z , _ + -” and shall be atost 31
characters in length. Client interfaservice names as defined ithis specificationshall not include a *“,".
Manufacturers may define proprietaglient interface services; any services so defisball contain the

“wn

manufacturer’s name followed by a “,”, followed by the interface service name.
6.3.2 Client interface service definitions

In thefollowing definitions,all arguments and retunaluesare cells. The first item listecbrresponds witlarg1,
the second with arg2, continuing through tiile item. Thekeywordnone indicatesthat there is no argument or
return value for this service. The modifistring] indicates that this argument or retwadue isthe address of
a null-terminated string. The modifieaddress] indicates that this argument or return value is an address.

6.3.2.1 Client interface

test
IN: [string] name
OUT: missing
Missingis O if the servicmameexists, and —1 if it does not exist.

64

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

6.3.2.2 Device tree

peer

child

parent

IN: phandle
OUT: sibling-phandle

Sibling-phandlés either the identifier of the device node that is the next sibling of the device node
identified byphandleor zero if there are no more siblingsptandleis zero,sibling-phandles the
identifier of the root node.

IN: phandle
OUT: child-phandle

Child-phandleis either the identifier of the device node that is the first child of the device node identified
by phandleor zero if there are no children.

IN: phandle
OUT: parent-phandle

Parent-phandlés either the node identifier of the device node that is the parent of the device node
identified byphandleor zero ifphandleis the identifier of the root node.

instance-to-package

IN: ihandle
OUT: phandle

Phandleis either the identifier corresponding to the instance ideniifardleor —1 if there is no
instance identifiethandle

If phandleis —1, Open Firmware was unable to translaaadle Open Firmware may, but is not required
to, check the validity of aihandle

getproplen

getprop

IN: phandle, [string] name
OUT: proplen

Proplenis either the length of the value associated with the propamein the device node identified by
phandle zero if the propertpameexists but has no corresponding value, or —1 if the propamedoes
not exist.

IN: phandle, [string] name, [address] buf, buflen
OUT: size

Copies a maximum dfuflenbytes of the value of the propertgmein the device node identified by
phandleinto the memory pointed to tuf. Sizeis either the actual size of the property, or -+aine
does not exist.

nextprop

IN: phandle, [string] previous, [address] buf
OUT: flag

Copies the name of the property followipigeviousin the property list of the device node identified by
phandleinto buf, as a null-terminated strinBufis the address of a 32-byte region of memorgréfious

is zero or a pointer to a null string, copies the name of the device node’s first property. If there are no
more properties aftgreviousor if previousis invalid (i.e., names a property which does not exist in that
device node), copies a null string. The return vélageis —1 if previousis invalid, zero if there are no
more properties aftgrevious or 1 otherwise.

65

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

setprop

canon

IN: phandle, [string] name, [address] buf, len
OUT: size

Sets the property value of the propergmein the device node identified phandleto the value

beginning at memory addrelsafand continuing foten bytes, attempting to create the property if it does
not exist.Sizeis the actual length of the new value, or —1 if the property value could not be set or could
not be created.

NOTE—Theremay be alength limitation on theproperty values othe “Joptions " node, whichare stored as
fields in nonvolatile RAM. In such cases, the property value could be truncated to fit the available space.

IN: [string] device-specifier, [address] buf, buflen
OUT: length

This service converts the possibly ambigudesice-specifieto a fully qualified pathname, storing, at
most,buflenbytes as a null-terminated string in the memory buffer starting at the addfdéshe
length of the null-terminated pathname is greater thalen the trailing characters and the null
terminator are not storetengthis the length of the fully qualified pathname excluding any null
terminator, or —1 if the pathname is invalid.

finddevice

IN: [string] device-specifier

OUT: phandle

Phandleis the identifier of the device node selectedlbyice-specifieras withfind-device , or =1 if
device-specifiecannot be matched. In either case,abive packagés unaffected.

instance-to-path

IN: ihandle, [address] buf, buflen
OUT: length

This service returns the fully qualified pathname corresponding to the ideihi#fielle storing, at most,
buflenbytes as a null-terminated string in the memory buffer starting at the addfdéshe length of

the null-terminated pathname is greater thafien the trailing characters and the null terminator are not
stored.Lengthis the length of the fully qualified pathname excluding any null terminator, orikdnidlle

is invalid.

package-to-path

66

IN: phandle, [address] buf, buflen
OUT: length

Returns the fully qualified pathname corresponding to the node ideptifrdle storing, at mostuflen
bytes as a null-terminated string in the memory buffer starting at the atddfegghe length of the null-
terminated pathname is greater tharflen the trailing characters and the null terminator are not stored.
Lengthis the length of the fully qualified pathname excluding any null terminator, orphhifdleis

invalid.

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

call-method

6.3.2.3
open

close

read

write

seek

IN: [string] method, ihandle, stack-argl, ..., stack-argP
OUT: catch-result, stack-resultl, ..., stack-resultQ

Pushes two less th@drargs items,stack-argl, ..., stack-argfnto the Forth data stack, witack-argl
on top of the stack, and executes the package method maetleddin the instancéhandleas with
$call-method , guarded byatch . Pops the result returned bgtch into catch-result If that result
is nonzero, restore the depth of the Forth data stack to its depth prior to the exeaaibmethod

If that result is zero, pops up to one less tNareturnsitems,stack-resultl ...,stack-resultQfrom the
Forth data stack into the returned values portion of the argument arragiacikhresultlcorresponding
to the top of the stack.

N-argsandN-returnsare stored in the argument array and may be different for different calls to
call-method . If the number of itemX left on the Forth data stack as a result of the execution of
methodis less tham-returns only stack-resultl.. stack-resultXare modified; other elements of the
returned values portion of the argument array are unaffect&ds Ifnore tharN-returns additional items
are popped from the Forth data stack after sestiagk-resultl.. stack-resultQso that, in all cases, the
execution otcall-method results in no net change to the depth of the Forth data stack.

An implementation shall allow at least sitack-argand sixstack-resulitems.
Device 1/0O

IN: [string] device-specifier
OUT: ihandle

Opens the package namedd®svice-specifieas withopen-dev , returning the instance identifier
ihandle lhandleis zero if the operation fails.

The same package can be opened more than once if the particular package permits it, in which case a
distinctihandlewill be returned each time.

IN: ihandle
OUT: none

Closes the instance identifed imandleas withclose-dev ; subsequent use of thaandleis invalid.

A client programshould close instances it has opened after the instances are no longer needed, in order to
release resources and to deactivate any associated devices.

IN: ihandle, [address] addr, len
OUT: actual

Executes theead method in the instandbandlewith argument&ddr andlen. Actualis either the
value returned by thatad method or —1 if that instance does not haveaa method.

IN: ihandle, [address] addr, len
OUT: actual

Executes thevrite method in the instangkandlewith argumentsddr andlen. Actualis either the
value returned by thatrite method or —1 if that instance does not haweiee method.

IN: ihandle, pos.hi, pos.lo
OUT: status

Executes theeek method in the instandbandlewith argumentgos.hiandpos.la Statusis either the
value returned by thaeek method or -1 if that instance does not hageek method.

67

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
6.3.2.4 Memory
claim

release

6.3.2.5
boot

enter

exit

chain

68

IN: [address] virt, size, align
OUT: [address] baseaddr

Allocatessizebytes of memory. lalign is zero, the allocated range begins at the virtual addirtss
Otherwise, an aligned address is automatically chosen and the input argistrisnginored. The
alignmentboundary is the smallest power of two greater than or equal to the valignpfinalign value
of 1 signifies 1-byte alignmenBaseis the beginning address of the allocated memory (equatt tid

align was 0) or —1 if the operation fails (for example, if the requested virtual address is unavailable).

The range of physical memory and virtual addresses affected by this operation will be unavailable for
subsequent mapping or allocation operations until freaglbgse

IN: [address] virt, size
OUT: none

Freessizebytes of physical memory starting at virtual addrggs making that physical memory and the
corresponding range of virtual address space available for later use. That memory must have been
previously allocated bglaim .

Control transfer

IN: [string] bootspec
OUT: none

Exits theclient program resets the system (as with the commasaét-all), and reboots the system
with the device and arguments given by the null-terminated sidatspecThe stringoootspeds
interpreted in the same manner as the arguments of the conboaind

IN: none
OUT: none

Enters the Open Firmware command interpreter (e.g., called by the operating system after a console input
device abort). The client program may be resumed if the user continues execution gatlctimmand.

IN: none
OUT: none

Exits from the client program. The execution of the client program may not be resumed.

IN: [address] virt, size, [address] entry, [address] args, len
OUT: none

Freessizebytes of memory starting at virtual address, then executes another client program beginning
at addresentry. The argument buffeargs, lenis copied into the Open Firmware memory and passed to
the other program. The address of the arguments in the Open Firmware memory is the client program’s
second argument, and their length is its third arguntéiain is used to free any remaining memory for

a secondary boot program and begin executing the booted program.

NOTE—The behavior ofhe chain client interface servicéncludes thdunctions ofinit-program andgo on
behalf of the new clienprogram, but does not includbe functions of readinghe clientprogram intomemory,
parsing its header, or allocating its memory.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

6.3.2.6 User interface

interpret
IN: [string] cmd, stack-arg1l, ..., stack-argP
OUT: catch-result, stack-resultl, ..., stack-resultQ

Pushes one less thlargs items,stack-argl ..., stack-argR onto the Forth data stack, witack-argl
on top of the stack; executes the null-terminated stningas a Forth command line guardeddaych .
Pops the result returned bgitch into catch-result If that result is nonzero, restore the depth of the
Forth data stack to its depth prior to the executiointefpret . If that result is zero, pops up to one
less tharN-returnsitems,stack-resultl..., stack-resultQfrom the Forth data stack into the returned
values portion of the argument array, wstack-resultlcorresponding to the top of the stack.

N-argsandN-returnsare stored in the argument array and may be different for different calls to
interpret . If the number of itemX left on the Forth data stack as a result of the executiomdfs
less tharN-returns only stack-resultl, ..., stack-resulfe modified; other elements of the returned
values portion of the argument array are unaffectedidfmore thamN-returns additional items are
popped from the Forth data stack after setstagk-resultl, ..., stack-resul®® that, in all cases, the
execution ofnterpret results in no net change to the depth of the Forth data stack.

An implementation shall allow at least sitack-argand sixstack-resulitems.
interpret is optional; it need be present only if the Open Firmware user interface is present.

set-callback
IN: [address] newfunc
OUT: [address] oldfunc

Client programamay define a routine for handling the Open Firmware routiaisack andsync .
Newfunds the address of the entry point of the callback routine. This service sets the callback handler to
newfuncand returns asldfuncthe address of the entry point of the previously installed callback handler.

The Open Firmware shall use the same calling conventions specified in 6. 8igribmterface services
when calling the callback handler function. $a#lback and$callback glossary entries for details.

A client program callback handler shall return either a nonzero error coderéilloell of the argument

array if the service indicated by the service argument is unavailable, or zero otherwise. The client program
callback handler shall return any additional results irrek2... retNcells, settindN-returnsto the total

number of return values including the error code (or zero) that is netheell. The handler shall not

store more thaM results, wherd/ is the value that was in tireturnscell when the handler was

called, nor shall the returned valueNsfeturnsexceed\.

69

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

set-symbol-lookup
IN: [address] sym-to-value, [address] value-to-sym
OUT: none
Sets the symbol table resolutidafer wordssym>value andvalue>sym so that they execute the
client program callbacks whose addresses are given by the argeyrenis-valueandvalue-to-sym
respectively. If either argument is zero, the correspondiéfier word is set to the action &dlse

sym-to-values called as follows:
IN: [string] symname
OUT: error, symvalue
Searches for a symbol whose namgyisinamelf such a symbol is found, returns zereemor
and the symbol’s value symvaluelf no such symbol is found, returns —leimor and zero in
symvalue
value-to-symis called as follows:
IN: symvalue
OUT: offset, [string] symname

Locates the symbol whose value is closest to but not greatesythrvalueand returnsffset the
non-negative offset from the value of that symbaymvalueandsymnamethe symbol name. If
symvaluds less than the value of any known symbol, or is insufficiently close to any symbol
value according to an implementation-dependent criterion, returnscffs@tand the empty
string insymname
set-symbol-lookup is optional; it need be present only if the Open Firmware user interface is
present and the Client Program Debuggiommmand groufisee 7.6) is implemented.

6.3.2.7 Time
milliseconds
IN: none
OUT: ms

Returns a number that increases periodically, representing the passage of time in units of one millisecond.
The granularity of this clock (i.e., the amount by which the number increases when it changes) is system-
dependent.

70

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

7. User interface

Theuser interfaceallows a person to use Open Firmware services for such purposes as configuaaggement
and debugging of hardwaresoftware,and firmware The interfaceconsists of facilities for keyboardput, line
editing, anddisplay output,and anevaluator (the Forttcommand interpretgrfor the Forth programming
language.

7.1 General

The Open Firmwaraser interfacespecifies the behavior offamware system so that a human may interact with it
for such purposes as configuratioranagement, control of tH®oting processand thedebugging of hardware,
client programsdevice driversand the firmware itself.

7.1.1 Description

A standardcommand interpretencceptsand executes commands, typically entered interactively thyuman,
according to defined command editing, syniaxd semantic rules. A standard command intepretéypigally a
component of the bodirmware associated with a CPU board.

A command groups a set of commands with defined behavithe, group as avhole providing somgarticular
capability (for example, one group of commands is concernedcligtit program debugging). Each command in
the groupmay be executed viastandard command interpreter. This standifines several such groupdost
such groups are optional. Thitause liststhe commandshat comprise the individual command groups. The
detailed specification of the commands themselves is given in annex A.

A standard program is a program, written in the langwsdimed bythe specification ofthe standard command
interpreter in conjunction with thepecification of one or more command groupsit obeysprescribed rules for
program structur@and usage. Consequently, its behavior is predictable vexecuted by astandard command
interpreter. A standard program ftgpically either entered interactively by lluman, downloaded fromsome
storage device, or stored within theript (see 7.4.4.2).

7.1.2 Specification

In order to be compliant with the Open Firmwaeer interfacethe boofirmwareassociated with a main CPU de-
vice shall implement a standambmmand interpretethataccepts usenput asdefined inthis clauseandone or
more of thecommand groupdefinedherein(see figure2). It should implement the Administrati@amd the Forth
Language command groups. It may implement additional commands that are not defined in this specification.

A command group implementation shall include all of Wrds and capabilities listed fothat command group
(except those words that are explicitly denoted as optional), and shall have behaviors as given.

* 7.3 Forth Language * 7.4 Administration

command group

7.5 Firmware Debugging
command group

7.6 Client Program Debugging
command group

command group

7.7 FCode Debugging
command group

* Command groups that shouldbe implemented.

T The Forth Language command group shall be included in the FCode Debugging command group.

NOTE—Implementation of any one of the command groups shown is sufficient to claim compliance with the Open Firmware user
interface.

71

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Figure 2—Open Firmware user interface command groups
7.1.3 Warning

The Open Firmwareser interfacds not required to operat®rrectly after alient programhasbegun execution,
because, irgeneral, it ispossible for aclient program tamodify systemstate inwaysthat areinconsistent with
continuedfirmware operation.

7.2 Standard command intepreter
7.2.1 Command interpretation

Command lines are interpreted as specified by ANSI X3.215-1994 and 2.3.3, with the following clarifications:

— Although Open Firmware implementations are encouragkzhtethe numeriaconversiorradix set to sixteen
(hexadecimal) in normal operation, the implementation is not required to establish a particuldefamix
evaluating a Forth program or &Code programnor is it required to do so whexecuting devicenethods
Consequently, if a program requires a particudaix, it mustexplicitly setthe radix (e.g., witldecimal or
hex).

— In accordance with ANSI X3.215-1994, an Open Firmwamn@mand interpretetreats numberthat endwith
a period (e.g., 123456.) @sublenumbers. Unlike ANSI X3.215-1994, whicoesnot specifywhat happens
with embedded periods, an Open Firmware commiataipreter ignores “.” or “,” at other positions within
numbers (e.g., 120.0000). Such embedded periods or commas may be used to make it lasian$oto read
the numbers, but have no significance to the command interpreter. By convention, such pec@mdmas
usually appear four digits from the right.

— At a given time, the process of searchingHorth wordsdepends on whether or not there isative package

If there is an active package, searching considerdiiestnethods dhatpackagefollowed by globally visible

Forth commands. If there is not an active package, searching considers only globally visible Forth commands.
7.2.2 Command-line editing

All keys typed byhe user arechoed orthe command linegxcept where notedVhen the Returkey (sometimes
called the Enter key) is pressed, the edited line is presented to the command interpretation process.

The following keys edit the command line while it is being entered:

Backspace Erases the character before the cursor.

Delete Erases the character before the cursor.

Control-U Erases the entire line.

Return (Enter) Finishes editing the line, making it available to the program.

7.2.3 Command-line editor extensions
The optional command-line editor extension provides additional command line editing capabilities.

These are usdeystrokes, typed bihe user whileomposing a commarihe. They allow a variety of convenient
mechanisms for the user, including line editing, command history, and command completion.

The notation »” means to holddlown the Controlkey while typing thefollowing character. ésc- “ means to
depress and release the “escape” key, then depress and release the following character.

72

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

7.2.3.1 Intraline editing

These command keystrokes alter the command line being typed. The editing cursor is considered to be between two
adjacent characters. For displdiat canonly indicate the cursor position ighlighting a particular character,
the character following the “true” cursor position should be highlighted.

Normaltypedcharacters are inserted at the cursor position. Typing the Retysends the entireisible line to
be interpreted (regardless of the current cursor position).

Each of thefollowing keystrokesshall perform the function of erasing tpeevious characterh, Deletekey (if
present) Backspacekey (if present). If asystemhasboth a Deletkey and aBackspace keyeach of thes&eys
shall perform the “delete character” function.

Keystroke Description

“b Moves backward one character.

esc-b Moves backward one word.

A Moves forward one character.

esc-f Moves forward one word.

“a Moves backward to lginning of line.

e Moves forward to end of line.

Delete Erasegprevious character.

Backspace Erasegprevious character.

“h Erasegprevious character.

esc-h tI?rf;lfses from bgnning of word tojust before the cursor, stogrrased characters in a save
uffer.

w tI?rf;lfses from kgnning of word tojust before the cursor, stogerased characters in a save
uffer.

d Erases next character.

esc-d Erases from cursor to end of the word, stpenased characters in a save buffer.

~k Erases from cursor to end of line, storgrased characters in a save buffer.

“u Erases entire line, stodrerased characters in a save buffer.

Ar Retypes the line.

g Quotes next character (allows the insertion of control characters).

Ny Inserts the contents of the save buffer before the cursor.

7.2.3.2 Command-line history

These command keystrokescall previously typedcommand lines. Once recallethey may be edite@nd/or
submitted for execution (by typing the Return key). At least eight previous command lines shall be saved.

Keystroke Description

“p Selects and diays theprevious line for subggient editiry.
“n Selects and dpays the next line for subgaent editim.

Al Displays the entire command hisyolist.

7.2.3.3 Command completion

The command-completion function makes it eaferthe user to enter long command names. After typing a
portion of the desired word, typing the “completion” keystroke causes the system to search the dictionary of defined
words, looking for worchames beginning with the charactéyged sofar. If there isexactly one such word, the

rest of the characters dfited in automatically. If therareseveral possibilitieghe system fills in anyadditional
characters that areommon toall the candidates. If there are defined wordnames starting with thgiven
characters, characters are erased until there are candidates for the remaining characters.

73

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Similarly, the “show” keystroke displays all words that begin with the letters supplied.

Keystroke Description
<space> Convplete this word.
~? orn Show allpossible matches.

7.3 Forth language command group

This clause doesot attempt tadescribe how to usthe Forth programming language;simply liststhe Forth
commandghat are requiredor conformance withthis standardMore information abouEForth may be found in
the bibliography in ANSI X3.215-1994.

Commands in thisubclause providéhe basicForth language structure. Many commands listeglalso FCode
functions Unless stated otherwisal] commandshown may be used frothe ok prompt withincolon definitions
and within downloaded Forth programs.

7.3.1 Stack

This subclause describes basic stack manipulation tools.

7.3.1.1 Stack duplication

These commands duplicate stack items and have no other effect.

dup (x--xx) Duplicate the top item on the stack.

2dup (X1 x2--x1x2x1x2) Duplicate the top two items on the stack.

3dup (X1 x2 x3 -- x1 x2 x3 x1 x2 x3) Duplicate three stack items.

?dup (x--0]xx) Duplicate top stack item if it is nonzero.

over (x1x2--x1x2x1) Copy second stack item to top of stack.

2over (X1 x2 x3 x4 -- X1 x2 x3 x4 x1 x2) Copy second pair of stack items to top of stack.

pick (Xu...xIx0u--xu...x1x0xu) Copyuth stack item to top of stack.

tuck (X1 x2--x2x1x2) Copy top stack item underneath the second stack item.

7.3.1.2 Stack removal

These commands remove stack items and have no other effect.

clear (=) Empty the stack.

drop (x--) Remove top item from the stack.

2drop (x1Ix2--) Remove top two items from the stack.
3drop (x1x2x3--) Remove top three items from the stack.
nip (x1Ix2--x2) Remove the second stack item.

7.3.1.3 Stack rearrangement

These commands rearrange stack items and have no other effect.

roll (xu...x1x0u--xu-1...x1x0xu) Rotatel stack items as shown.

rot (X1 x2x3--x2x3x1) Rotate top three stack items as shown.

-rot (X1 x2x3--x3x1x2) Rotate top three stack items as shown.

2rot (x1 x2 x3 x4 x5 x6 --x3 x4 x5x6 x1 x2) Rotate three pairs of stack items as shown.
swap (xIx2--x2x1) Exchange top two stack items.

2swap (X1 x2 x3 x4 -- x3 x4 x1 x2) Exchange top two pairs of stack items.

74

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

7.3.1.4 Return stack

Thereturn stackis a second stack used for system purposes. It may also be used as a temporaryhstdedethy
programmer; however, there are strong restrictions on such usage as specified by ANSI X3.215-1994 (see 3.2.3.3).

>r (x--) (R:i--x) Move top stack item to the return stack.
r> (-x) (Rix--) Move top return stack item to the stack.
r@ (-x) (Rix--x) Copy top return stack item to the stack.

7.3.1.5 Stack depth

Thedepth command is useful for error detection, by checking the total depth of the stack to find unintended stack
effects.

depth (--u) Return count of items on the stack.
7.3.2 Arithmetic

7.3.2.1 Single-precision integer arithmetic

+ (nulnu2--sum) Addulto nu2

- (nul nu2 -- diff) Subtraatu2fromnul

* (nul nu2 --prod) Multiplyhul by nu2

u* (ulu2 -- uprod) Multiply1 by u2 yieldinguprod all unsigned.
/ (n1n2--quot) Dividen1 by n2; return quotient.

*/ (nln2n3--quot) Calculatel timesn2 divided byn3.

mod (n1n2--rem) Dividen1 by n2; return remainder.

/mod (nln2--remquot) Dividal by n2; return remainder and quotient.
*/mod (n1n2n3--remquot) Calculaté timesn2 divided byn3.

u/mod (ul u2 -- urem uquot) Dividel by n2, all unsigned.

1+ (nul--nu2) Add 1 toul

1- (nul--nu2) Subtract 1 fromul

2+ (nul--nu2) Add 2 toul

2- (nul--nu2) Subtract 2 fromul

abs (n--u) Return absolute value rf

negate (nl1--n2) Return negation aofl.

max (n1n2--nln2) Return greaterrdf andn2.

min (n1n2--nln2) Return lesserrdf andn2.

bounds (nent--n+entn) Prepare argumentsdoror ?do loop.

even (n--njn+1) Round to nearest even integer _

7.3.2.2 Bitwise logical operators

Ishift (xLu--x2) Shiftx1 left by u bit-places. Zero-fill low bits.

rshift (xLu--x2) Shiftx1 right byu bit-places. Zero-fill high bits.
>>a (xLu--x2) Arithmetic shifk1 right byu bit-places.

<< (xLu--x2) Synonym faishift

>> (xLu--x2) Synonym forshift

2* (x1--x2) Shiftx1 left by one bit-place. Zero-fill low bit.

u2/ (x1--x2) Shiftx1 right by one bit-place. Zero-fill high bit.

2/ (x1--x2) Shiftx1 right by one bit-place. High bit unchanged.
and (x1x2--x3) Return bitwise logical “and” afl. andx2.
(continued)

75

IEEE
Std 1275-1994

or (x1x2--x3)
xor (x1x2--x3)
invert (x1--x2)
not (x1--x2)

7.3.2.3 Double number arithmetic

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Return bitwise logical “inclusive-or” &l andx2.
Return bitwise logical “exclusive-or” »f andx2.
Invert all bits ok1.
Synonym foinvert

Double numbers occupy two stack items. The most significant half of the double is always the topmost stack item.

s>d (nl--d1)

d+ (d1d2--d.sum)
d- (d1d2 --d.diff)
um* (ulu2--ud)

m* (n1n2--d)
um/mod (ud u -- urem uquot)
fm/mod (dn--remquot)
sm/rem (dn--remquot)

7.3.2.4 Data type conversion

Ibsplit (quad -- b.lo b2 b3 b4.hi)
Iwsplit (quad -- wl.lo w2.hi)
whbsplit (w--bl.lo b2.hi)
bljoin (bl.lo b2 b3 b4.hi -- quad)
bwjoin (b.lo b.hi--w)

wljoin (w.lo w.hi -- quad)
whbflip (wl--w2)

Ibflip (ql--g2)

Iwflip (ql--g2)

7.3.2.5 Address arithmetic

lc (--n)

Iw (--n)

Nl (--n)

/n (--n)

ca+ (addrl index -- addr2)
wa+ (addrl index -- addr2)
la+ (addrl index -- addr2)
na+ (addrl index -- addr2)
cal+ (addrl -- addr2)
wal+ (addrl -- addr2)
lal+ (addrl -- addr2)
nal+ (addrl -- addr2)
/c* (nul--nu2)

Iw* (nul--nu2)

N* (nul--nu2)

/n* (nul--nu2)
aligned (nl--nlja-addr)
char+ (addrl -- addr2)
cell+ (addrl -- addr2)
chars (nul--nu2)
cells (nul--nu2)

76

Convert a number to a double number.
Add d1tod2 giving double numbed.sum
Subtraai2 from d1 giving double numbedl. diff.
Unsigned multiply with unsigned double number product.
Signed multiply with double number product.
Divided by u.
Dividel by n.
Dividel by n, symmetric division.

Split a quadlet into four bytes.
Split a quadlet into two doublets.
Split a doublet into two bytes.

Join four bytes to form a quadlet.
Join two bytes to form a doublet.
Join two doublets to form a quadlet.
Swap the bytes within a doublet.
Reverse the bytes within a quadlet.
Swap the doublets within a quadlet.

The number of address units to a byte: one.
The number of address units to a doublet: typically, two.
The number of address units to a quadlet: typically, four.
The number of address units in a cell.
Incremesnddrl by indextimes the value oftc .
Incremesnddrl by indextimes the value afv .
Incremeenddrl by indextimes the value of .
Incremesnddrl by indextimes the value ofn.
Synonym forchar+ .
Incrementddrl by the value ofw .
Incrementddrlby the value ofl .
Synonym forcell+
Synonym forchars .
Multiplynul by the value ofw .
Multiplynulby the value ofl .
Synonym for/n* .
Increaséd as necessary to givevar-aligned address.
Incrementddrl by the value ofc .
Incremeaddrl by indextimes the value of .
Multiplynul by the value ofc .
Multiplynul by the value ofn .

IEEE
Std 1275-1994

CORE REQUIREMENTS AND PRACTICES
7.3.3 Memory control
7.3.3.1 Memory access

Thefollowing commandsan beused to access memory. Devicas beaccessedsing the commands in 5.3.7.2.

See 7.7.

@ (a-addr -- x) Fetch itemfrom address-addr.

! (x a-addr --) Store itemto address-addr.

2@ (a-addr -- x1 x2) Fetch two items fraaraddr, itemx2 from lower address.
2! (x1 x2 a-addr --) Store itemxd andx2 to a-addr, x2 at lower address.

c@ (addr -- byte) Fetch byte froaddr.

c! (byte addr --) Store byte adr.

w@ (waddr --w) Fetch doublet from waddr.

W@ (waddr --n) Fetch doublet from waddr, sign-extended.

w! (w waddr --) Store doublet to waddr.

1@ (gaddr -- quad) Fetch quadlet frayaddr.

(quad gaddr --)

Store quadletgaddr.

unaligned-w@ (addr--w) Fetch doublet from addr, any alignment is allowed.
unaligned-w! (waddr--) Store doublet to addr, any alignment is allowed.
unaligned-1@ (addr -- quad) Fetch quadlet fraaddr, any alignment is allowed.
unaligned-I! (quad addr --) Store quadletaddr, any alignment is allowed.

comp (addrl addr2 len -- 2diff?) Compare two arrays of letegth

dump (addrlen--) Displayen bytes of memory starting atdr.

+! (nu a-addr --) Adgchu to the number stored at addrasaddr.

off (a-addr --) Storéalse at address-addr.

on (a-addr --) Stor¢rue at addresa-addr.

move (' src-addr dest-addr len --) Copylen bytes fromsrc-addrto dest-addr

fill (‘addr len byte --) Séen bytes beginning addr to the valudyte

blank (addrlen --) Selen bytes beginning aiddr to the value 0x20.

erase (addrlen --) Selen bytes beginning atddr to zero.

whbflips (waddr len --) Swap the bytes within each doublet in the given region.
Ibflips (gaddr len --) Reverse the bytes within each quadlet in the given region.
Iwflips (gaddrlen --) Swap the doublets within each quadlet in the given region.

7.3.3.2 Memory allocation

The following commands allocate and free regions of memory. The address can be used directly; it does not need to

be mapped before use.

alloc-mem
free-mem

(len -- a-addr)
(a-addr len --)

7.3.4 Text input and output

Allocatéen bytes of memory.
Free memory allocatedabypc-mem .

This subclause describes commands used for text input, output, and manipulation.

7.3.4.1 Textinput

These commands parse text from the Forth input buffer. (See A.1.2.2 for the distinction between “text” and [text].)

(
\

(continued)

([text<)>] --)
([rest-of-line<cr>] --)

Ignore the immediately following text, up to closing'.*
Ignore the immediately following text on this line.

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
>in (--a-addr) variable containing offset of next input buffer character.
parse (delim “text<delim>" -- str len) Parse text from the input buffer, delimiteddijm
parse-word ("< >text< >” -- strlen) Parse text from the input buffer, delimited by space.
source (--addrlen) Return the location and size of the input buffer.

word (delim “<delims>text<delim>" -- pstr) Parse text from the input buffer, delimiteddbyn

7.3.4.2 Console input

These commands read characters from the console input device at execution time.

key? (-- pressed?) Retutrue if an input character is available.

key (--char) Read a character from the console input device.

expect (addrlen --) Get an edited input line, storing iaddr.

span (--a-addr) variable containing number of characters received by
expect .

accept (addrlenl -- len2) Get an edited input line, storing édatr.

7.3.4.3 ASCII constants

These commands return the numeric values of particular characters.

bell (--0x07) ASCII code for the Bell character.

bl (--0x20) ASCII code for the Space (blank) character.

bs (-- 0x08) ASCII code for the Backspace character.

carret (--0x0D) ASCII code for the Carriage-return character.

linefeed (-- Ox0A) ASCII code for the Linefeed character.

ascii ([text< >] -- char) Generate ASCII code for the immediately following character.

char (“text< >" -- char) Generate ASCII code for the next character from input buffer.

[char] (C: [text< >] --) (--char) Generate ASCII code for the next character from input buffer.
control ([text< >] -- char) Generate control code for the immediately following character.

7.3.4.4 Console output

These commands display text on the console output device.

. ([text<' >] --) Display the immediately following text.

(([textg) >] --) Display the immediately following text up to delimitingy™
emit (char --) Display the given ASCII character.

type (text-str text-len --) Display theext-lencharacters beginning at addrése-str.

7.3.4.5 Output formatting

These commands control the positioning of displayed text on the console output device.

cr (--) Subsequent output goes to the next line.
space (-) Display a single space.

spaces (ent--) Displaycnt spaces.

#line (--a-addr) variable holding the output line number.
#out (--a-addr) variable holding the output column number.

78

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

7.3.4.6 Display pause

This command is a tool that a routine can use to provide user-controlled pagination of its multiline output.
exit? (--done?) Returtrue when output should be terminated.

7.3.4.7 String literals

" ([text<' >< >] -- text-str text-len) Gather the immediately following string or hex data.
([text<" >] -- text-str text-len) Gather the immediately following string.

7.3.4.8 String manipulation

count (pstr -- strlen) Unpack a counted string to a text string.
pack ('strlen addr -- pstr) Pack a text string into a counted string.
Icc (charl -- char2) Convert ASClicharlto lowercase.

upc (charl -- char2) Convert ASClicharlto uppercase.
-trailing (strlenl -- strlen2) Remove trailing spaces from string.

7.3.5 Numeric input and output
7.3.5.1 Numeric-base control

These commands control the numeric radix for input and output conversion, i.e., hex, decimal, etc.

base (--a-addr) variable containing the numeric conversion radix.
decimal (--) Set numeric conversion radix to ten.

hex (--) Set numeric conversion radix to sixteen.

octal (--) Set numeric conversion radix to eight.

7.3.5.2 Numeric input

$number (addr len -- true | n false) Convert a string to a number.

>number (d1strllenl -- d2 str2 len2) Convstting to a number; add tl.

digit (char base -- digit true | char false) Convert a character to a digit in thebgisen

d# ([number< >] --n) Interpret the following number as a decimal number (base ten).

h# ([number< >] --n) Interpret the following number as a hexadecimal number (base
sixteen).

o# ([number< >] --n) Interpret the following number as an octal number (base eight).

7.3.5.3 Numeric output

. (nu--) Display number, with a trailing space.

S. (n--) Display a signed number, with a trailing space.

u. (u--) Display an unsigned number, with a trailing space.
I (nsize --) Display a signed number, right-justified.

u.r (usize --) Display an unsigned number, right-justified.

d (n--) Display a signed number (and space) in decimal.
.h (n--) Display a signed number (and space) in hex.

.S (e =) Display entire stack contents, unchanged.

? (a-addr --) Display the number at addrassddr.

79

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

7.3.5.4 Numeric output primitives

These commands give precise control of number output format.

) (n--strlen) Convert a number into a text string.

(u.) (u--strlen) Convert an unsigned number into a text string.

<# () Initialize pictured numeric output conversion.

(udl--ud2) Convert a digit in pictured numeric output conversion.
#s (udl--00) Convert remaining digits in pictured numeric output.
#> (ud--strlen) End pictured numeric output conversion.

hold (char --) Addchar in pictured numeric output conversion.

sign (n--) Ifn <0, insert =" in pictured numeric output.

u# (ul--u2) Convert a digit in pictured numeric output conversion.
u#s (u--0) Convert remaining digits in pictured numeric output.
u#> (u--strlen) End pictured numeric output conversion.

7.3.6 Comparison operators

< (n1n2--less?) Retutrue if nlis less tham2.

<= (n1n2 -- less-or-equal?) Returme if nlis less than or equal t®.

<> (x1 x2 -- not-equal?) Retutrue if x1is not equal to2.

= (x1x2 --equal?) Returtmue if x1is equal tox2.

> (n1n2 -- greater?) Retutrue if nlis greater than2

>= (n1 n2 -- greater-or-equal?) Retdrne if nlis greater than or equal n@.
between ('n min max -- min<=n<=max?) Retutrue if nis betweemmin andmax inclusive.
within ('n min max -- min<=n<max?) Retutrue if nis betweemminandmax-1, inclusive.
o< ('n --less-than-07?) Retutrue if nis less than zero.

O<= (n -- less-or-equal-to-0?) Retumue if nis less than or equal to zero.
0<> ('n -- not-equal-to-0?) Retutrue if nis not equal to zero.

0= (nulflag -- equal-to-0?) Retutrue if nulflagis equal to zero.

0> ('n -- greater-than-0?) Retutue if nis greater than zero.

0>= ('n -- greater-or-equal-to-0?) Returoe if nis greater than or equal to zero.
u< (ul u2 -- unsigned-less?) Returne if ulis less tham2, unsigned.

u<= (ul u2 -- unsigned-less-or-equal?) Retwue if ulless or equal to2, unsigned.

u> (ul u2 -- unsigned-greater?) Rettmre if ulis greater than2, unsigned.
u>= (ul u2 -- unsigned-greater-or-equal?) Retwe if ulgreater or equal to2, unsigned.

7.3.7 Flag constants

false (--false) Return the valdalse (zero).
true (--true) Return the valueue (negative one).

7.3.8 Control-flow commands

This subclause describes commands wlatter the progranflow. This includes branchemkops,error handling,
and other execution-control commands.

These commands can be used either within definitions or interactively.

80

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

7.3.8.1 Conditional branches

These commands provide a basic “if-then-else” branching capability.

if (do-next? --) When flag isue , execute following code.
(C: -- orig-sys)
else (-) Whenif flag isfalse , execute following code.
(C: orig-sys1 -- orig-sys2)
then (-) Terminate anf construct.
(C: orig-sys --)

7.3.8.2 Case statement

These commands provide an “n-way” branching capability.

case (sel --sel) Begin aase (multiple selection) statement.
(C: -- case-sys)
of (sel of-val -- sel | <nothing>) Begof clause; execute througimdof if params match.
(C: case-sys1 -- case-sys2 of-sys)
endof (-) Mark end of clause; jump to endadse if match.
(C: case-sys1 of-sys -- case-sys2)
endcase (sel | <nothing> --) Mark end ofaase statement.

(C: case-sys --)
7.3.8.3 Conditional loops

These commands loop until a specified condition is met.

begin () Begin a conditional loop.
(C: -- dest-sys)
until (done? --) End begin ... until loop; exits loop if flag is true.
(C: dest-sys --)
again (-) End an (infinitepegin ... again loop.
(C: dest-sys --)
while (continue? --) Conditional test withiregin ... while ... repeat loop.
(C: dest-sys -- orig-sys dest-sys)
repeat (-) End abegin ... while ... repeat loop;jump tobegin .

(C: orig-sys dest-sys --)
7.3.8.4 Counted loops

These commands loop for a specifieamber of iterations, maintaining an inductieariablethat may beread
from within the loop.

do (limit start --) (R:--sys) Start a counted loop; beginning index valsiis
(C: -- dodest)
?do (limit start --) (R: -- sys) Similar tdo, but do not execute looplifit = start
(C: -- dodest)
loop (--) (R:sysl -- <nothing> | sys2) Add one to index; return to the pred@os exit the
(C: dodest --) loop.
+loop (delta--) (R:sysl--<nothing>|sys2) Adeltato index; return to the previod® or exit the loop.
(C:sys--)
(continued)

81

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
i (--index) (R:sys--sys) Return current loop index value.

i (--index) (R:sys--sys) Return next outer loop index value.

leave (-) (Risys--) Exit thiglo or ?do loop immediately.

?leave (exit? --) (R:sys--) If flag is true, exit thi® or ?do loop immediately.

unloop (--) (R:sys--) Discard loop control parameters.

7.3.8.5 Other control flow commands

eval (...strlen--??2?) Synonym forevaluate

evaluate (...strlen--???) Interpret Forth text from the given string.
execute (... xt--2?7?) Execute the command whose execution toben is
exit (-) (Risys--) Exit from the currently executing command.

7.3.8.6 Error handling

These commands can transfer control across multiple levels of procedure nesting.

quit (-) Ri...--) Abort program execution.
abort (e =) R) Abort program execution; clear stacks.
abort" (... abort? -- ... | <nothing>) (R: ... -- ... | <nothing>) If flagus , display text and calbort .
(C: [text<">] --)
catch (... xt--??? error-code | ??? false) Execute command indicax&d®yrnthrow result.
throw (... error-code -- ??? error-code | ...) Transfer backtich routine iferror-codeis nonzero.

7.3.9 Forth dictionary

This section describes commands used to craatefind Forthdefinitionsand dataThey are grouped into two
broad categoriestefining wordsanddictionary commands

7.3.9.1 Defining words

Defining words are commands that create other Forth commands.

If a Forth command is created with the same name as an existing command, the new command will be created nor-
mally. A warningmessagexyz isn't unique " may optionally be displayed. Previous useshaitcommand

name will beunaffected. Subsequent usegtwit command name willisethe latest definition othat command
name.

constant (X “new-name< >" --) Create a named constasty-nameeturns value.
(E:--x)
2constant (x1 x2 “new-name< >” --) Create a named two-number constant.
(E:--x1x2)
value (X “new-name< >" --) Create a named variable; changetwith
(E:--x)
variable (“new-name< >" --) Create a named varialsleyv-nameeturns address-addr.
(E: -- a-addr)
buffer: (len “new-name< >" --) Creates a named data bufiewn-nameeturns address.
(E: -- a-addr)
(continued)

82

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
(“new-name< >" -- colon-sys) Begin creation of a colon definition.

(E:...--???)

; (colon-sys --) End creation of a colon definition.

alias (“new-name< >old-name< >" --) Create a new command equivalent to an existing command.
(E:...--???)

defer (“new-name< >" --) Create a command with alterable behavior; altettavith
(E:...--???)

struct (--0) Start sstruct ... field definition.

field (offset size “new-name< >" -- offset+size) Create new field offset specifier, naemedame

(E: addr -- addr+offset)

create (“new-name< >" --) Create a new command; behavior set by further commands.

(E:...--???)
does> (C: colon-sys1 -- colon-sys2) Specify run-time behavior afeated word.

(--) (Risysl--)
(...--...a-addr) (R:--sys2)

(E:...--???)
$create (name-str name-len --) Calteate ; new name specified bypame string
forget (“old-name< >" --) Remove commarmdd-nameand all subsequent definitions.

7.3.9.2 Dictionary commands
Dictionary commands control various aspects of the Forth dictionary.
7.3.9.2.1 Data space allocation

These commands allocate and initialize memory at the top of the data space.

here (--addr) Return current dictionary pointer.

allot (len--) Allocatelen bytes in the dictionary.

align (--) Allocate dictionary bytes to leave top of dictionagy-aligned.
c, (‘byte --) Compile a byte into the dictionary.

w, (w--) Compile a doublew into the dictionary (doublet-aligned).

l, (quad --) Compile a quadlet into the dictionary (doublet-aligned).

, (x-) Appendx to data space.

7.3.9.2.2 Immediate words

Most Forth commands, when encountered withioodon definition arecompiled forlater use. When theolon
definition is laterexecutedthe Forth commandsompiledwithin are therexecutedlmmediatewords,in contrast,
are executed immediately, even when encountered within a colon definition.

immediate (--) Declare the previous definition as “immediate”.
state (--a-addr) variable containingtrue if in compile state.
(continued)

83

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
[(-) Enter interpret state.
] (-) Enter compile state.
compile (--) Compile following command at run time.
[compile] ([old-name< >] --) Compile the immediately following command.
literal (--x1) Compile a number, later leave it on the stack.
(C:x1-)
postpone (... - ?27) Delay execution of the immediately following command.
(C: [old-name< >] --)
compile, (xt--) Compile the behavior of the word givendy

7.3.9.2.3 Dictionary search

These commands are all variations of$hee idea: find a command in the dictionary (given its nameé)return
the execution token othe word and/or other information. The portions of the dictiontrgt arevisible at a
particular time are controlled by the search order (see 3.2.2.4 and 7.5.3.1 for additional commands).

[T ([old-name< >] -- xt)Return execution token xt of a command.'

' (old-name< > -- xt)Return execution token xt of a command, parsed later.'

find (pstr -- xt n | pstr false) Find command, return -1 (found), +1 (immediate), or O (not
found).

7.3.9.2.4 Miscellaneous dictionary

This subclause contains other dictionary-related commands.

to (param [old-name< >] --) Changelue or defer or machine register contents.
behavior (defer-xt -- contents-xt) Retrieve execution behavior déf@r word.

>body (xt-- a-addr) Convert execution token to data field address.

body> (a-addr -- xt) Convert data field address to execution token.

noop (-) Do nothing.

recursive (--) Make current definition visible, for recursive call.
recurse (...-?2?27?) Compile recursive call to the command being compiled.
forth (--) Make Forth the context vocabulary.

environment? ('strlen -- false | value true) Return system information based on input keyword.

7.3.9.3 Assembler

The assembler permits machine-level code definitions to be created and executed by the user at the déoteractive
mand interpretetevel. A machine-code definition, once created, can be executed or used in subsequent definitions,
just like any other command. The assembler mnemonics depend motlessor instruction séthe commands to

invoke and exit the assembler are the same for all processors.

The assembler mnemoniase processorand implementation-dependeand are nospecified inthis document.
Creation of a machine-code definition also dependspatific knowledge ofhe details of the particular Forth
implementation. Register usage, etc., by the Forth implementation is not specified in this document.

code (“new-name< >" -- code-sys) Begin creation of machine-code command nalledame
(E:...--???)
label (“new-name< >" -- code-sys) Begin machine-code sequence;aelaven stack.
(E: -- addr)
c; (code-sys --) End creation of machine-code command; will return to caller.
end-code (code-sys --) End creation of machine-code sequence.

84

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

7.4 Administration command group

Commands in thisubclause relate to bootimgdsystemconfiguration. These commands generally work from the
ok prompt, butare not designefibr usewithin Forth programs. An Open Firmware implementatioat includes
the Administratiorcommand groughall implement théliases and/options standard system nodes.

7.41 Help

The help function idplays messages describing names usages for various Open Firmware commands and
configuration variablesThis command may be invoked in three basic ways: general, by name, and by category.

Examples:

ok help<cr>
Enter "help command-name" or "help category-name" for more help
(Use ONLY the first word of a category description)
Examples: help select -or- help line
Main categories are:
File download and boot
Resume execution
Diag (diagnostic routines)

etc.

ok help +bp<cr>
+bp (addr--) add a breakpoint at the given address

The specific set of commands describedhglp is system-dependenthat set should include at least theost
commonly used commands, and may include other commands as space permits.

help (“{name}<cr>" --) Provide information for category or specific command.
7.4.2 System start-up

Following is a quick summary dhe Open Firmware start-upequence after power-on or resatl of the
commands mentioned here are described in more detail later in this clause and in annex A.

The normal Open Firmware start-up sequence is as follows:

a) Power-on self-test (POST)

b) System initialization

c) Evaluate thecript (if use-nvramrc? s true)

d) probe-all (evaluate FCode)

e) install-console

f) banner

g) Secondary diagnostics

h) Default boot (ifauto-boot? s true)

i) Invoke thecommand interprete(if the preceding step returns)

It is sometimes desirable toodify the sequence grobe-all install-console banner ". For example,
commandghat modify the characteristics gflug-in deviceamight need to be executed aftére plug-indevices
have been probed bbeforethe console devicdnasbeen selected. Such commands need to be exdoetiwden

probe-all and install-console . Commandghat display output orthe console need to be placed after
install-console or banner . This is accomplished by creating a custom script. &azommodate such
customized script sequencdbe sequence grobe-all install-console banner " is not executed if

either banner or suppress-banner is executed fromthe script. Thisallows the use of probe-all

85

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

install-console andbanner inside the script, possibly interspersed with other commands, without having
those commands re-executed after the script finishes.

7.4.3 Booting

Booting is theprocess ofoading and executing eclient program, usuallythe operatingsystem. Booting usually
happens automatically, requiring no user intervention. Fronsahenand interpreterthe user caalso explicitly
initiate booting.

7.4.3.1 Overview

Thebooting process proceeds as followsdeviceis selected for booting. Arogram is read frorthat deviceinto
memory, using grotocolthat depends on thgpe of deviceand isexecutedFurtherbehavior ofthat program
may be controlled by aargument string that imade available to the program by the Open Firmware. Often, this
program is aecondary boot programhose purpose is toad yetanother program. Thgecondary bogbrogram

may be capable aising additionaprotocolsotherthan theprotocolthat Open Firmware used to loabe first
program. For example, Open Firmwaray usethe Trivial File TransfelProtocol (TFTP) to loadhe “/boot ”
program, which then mighisethe Network File System (NFS) protocol to lo#tte operatingystem from a file
named fvmunix ”

Typical secondary boot programs accept arguments of the following form:
filename -flags..

wherefilenameis the name of &ile containing the operatingystemand-flagsis a list of options controlling the
details of the start-up phase of either segondary booprogram, the operatingystem orboth. However, it is
important to recognizéhatfrom Open Firmware’s point ofiew the bootarguments are aopaquestring that is
passed uninterpreted to the boot program.

7.4.3.2 Device and argument selection

The automatic booting process is controlleccbgfiguration variabless follows:
— If auto-boot? isfalse (its default value idrue), automatic bootingloesnot occurand theinteractive
command interpreteis invoked.

— Otherwise, the commanspecified bythe boot-command configuration variable is execute@ihe default
value of boot-command is the commandboot with no command-line arguments. liat case, if
diagnostic-mode? returnsfalse , the defaultboot device iggiven byboot-device and thedefault
bootarguments are given ppot-file ; If diagnostic-mode? returnstrue , the defaulboot device is
given bydiag-device and the default boot arguments are giveiliag-file

The user carexplicitly executethe boot command from the command interpreter, in whielsethe user can
either supply explicit command-line arguments or omit them so that the default arguments will be used.

7.4.3.3 Boot protocol

The protocol used tdoad the firstclient program depends on thiype of deviceFor example, the first-stage disk
bootmight read dixed number ofblocks fromthe beginning of the disk. The first-stage tdgo@t might read a
particular tape file.

7.4.3.4 Argument passing

Thedevice pathof theboot device igjiven by thevalue ofthe ‘bootpath " propertyin the/chosen node. This
letsclient programsdetermine the device from which they were booted.

86

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

The boot arguments are given by thedtargs " property in thelchosen node.
7.4.3.5 User commands for booting

The syntaxor theboot command is ambiguousecause adevicealias cannot be syntactically distinguishezin
the arguments. The ambiguity is resolved as follows:

— If the word following boot on the command line begins with a “/”, thwrd is adevice pathand, thus, a
device specifier.

— Otherwise, if there is a device alias matching that word, the word is a device specifier.

— If that word is neither @evicepath nor &nown alias, the defautioot device is useand theword is included
in arguments

Assumingthatdisk0 hasbeen predefined as a devigkasfor some devicgath, thefollowing are examples of
valid boot commands:

ok boot<cr> \ default boot (values specified @onfiguration variable)

ok boot diskO<cr> \ boot fromdiskO ; pass boot program default arguments
ok boot diskO vmunix -asw<cr> \ boot fromdiskO ; pass boot program “vmunix -asw”

ok boot vmunix -asw<cr>\ boot from default dev; pass boot program “vmunix -asw”

If the boot command is executed afteckent programhasalready beemun, theboot command may reset the
machine as withieset-all , thus reinitializing the hardware statad Open Firmware’s data structurbsfore
proceeding with thebooting processThis is necessary becaugbe client programmay have modified the
machine’s state imaysthat theOpen Firmware cannot “undo” without a “hard resmtit! the machine’s current
state could prevent a boot from succeeding.

boot (“{param-text}<cr>" --) Load and execute a program specifieghtasam-text

diagnostic-mode? (--diag?) Iftrue , boot from diag sources; perform longer self-tests.

diag-switch? (--diag?) Iftrue , diagnostic-mode? returnstrue .

boot-device (-- dev-str dev-len)) Defaulioot device-namédiagnostic-mode? false).

boot-file (-- arg-str arg-len) Defaulioot argumentgdiagnostic-mode? false).

diag-device (-- dev-str dev-len)) Defautioot device-namédiagnostic-mode? true).

diag-file (-- arg-str arg-len) Defaulioot argumentgdiagnostic-mode? true).

auto-boot? (--auto?) Itrue , automatically executeoot-command after power-
on orreset-all

boot-command (--addrlen) Command executedifto-boot? istrue .

744 Nonvolatile memory

System nonvolatile memory is used to preserve systartrup andooting informationThis informationmay be
saved in EEPROM, battery-backed RAM, or sastieerdevice.The key featuresare that it can baccessed by the
Open Firmware duringystemstart-up, it can be changed by the user as desratl,itscontents persist when
power is off.

System nonvolatile memory is dividéato two sections, one fothe storage otonfiguration variable, and the
other for thescript

7.4.4.1 Configuration variables
Configuration variablesire an optional feature of the Administrats@mmand group

A number of Open Firmware operating characteristics are controlled by configuration vagtiies in
nonvolatile memoryThe value of a configuration variabtean be a number, a string, a true/false flagelaction

87

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

from a set of choices, or one of several otfeiatypes,depending on the particular variabMost configuration
variables have both a currevdlue and adefault value, with the defaultalue stored in ROM. Open Firmware
implementations can maintainchecksum of the nonvolatilmemory used for configuration variabdéorage. If
that memory becomesorrupted, the Open Firmware implementation can restorse ofthe configuration
variables to their default values, leaving untouched those configuration variables without default values.

The nonvolatilememory locations wherparticular parameteraluesare storedcan changérom machine to ma-
chine androm revision to revisionThus,they cannot beaccessed at fixed locations, bostead must baccessed
by name.Userscanaccesgshem by name usingrintenv ~ andsetenv . Client programscanaccesghem by
name vieclient interfaceoperations on théoptions device node

The configuration variabldatatypesare given in thdollowing list. Each datdype is described iterms of its
“Fundamental Data Type,” which is the kind of informattbat itrepresents, its “Stack Representation,” which is
the way that information ispresented on the Forth stack, its “Input Text Representation,” which tsuthan-
writeable form as used witketenv , $setenv , andsetprop , and its“Output Text Representation,” which is
its human-readable form as used witintenv andgetprop . The internal storage format is not specified.

integer Fundamental Data Type: number
Stack Representation: n
Input Text Representation: decimal number or hexadecimal number beginning with “0x”
Output Text Representation: decimal number

bytesh] Fundamental Data Type: a sequence byites
Stack Representation: addr len
Input Text Representation: a sequenca bytes
Output Text Representation: a sequence loftes

string[n] Fundamental Data Type: text string capable of storing at tectsaracters
Stack Representation: addr len
Input Text Representation: text
Output Text Representation: text

boolean Fundamental Data Type: true/false flag
Stack Representation: flag
Input Text Representation: one of the strirtgse , false , TRUE or FALSE
Output Text Representation: one of the stringge or false

security-mode Fundamental Data Type: enumerated type
Stack Representation: none
Input Text Representation: one of the stringme , command, or full
Output Text Representation: one of the strimgge , command, or full

Configuration variables ardescribed inthe following subclausesilong with the featurethat require them. In
implementationsghat do notsupport configuration variables, featurismt depend on particular configuration
variables may use fixed default values for those variables.

88

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

The following commands inspect and modify configuration variables:

setenv (“nv-param< >new-value<eol>" --) Set the configuration variaitgparamto the indicated value.
$setenv (data-addr data-len name-str name-len --) Set the configuration varéetsestringo new value.
printenv (“{param-namej}<eol>" --) Display current, default valueooinfiguration variablgor all).
set-default (“param-name<eol>" --) Set configuration variable to default value.
set-defaults (--) Reset most configuration variables to their default values.
nodefault-bytes (maxlen “new-name< >" --) Create custom configuration variable ohszeéen

(E: -- addr len)

A summary list ofall Open Firmwaralefined configuration variables is givenannex G.Note thatimplementa-
tions are free to define additional configuration variables as needed.

7.4.4.2 The script

Thescriptis a section of nonvolatile memoatiyat isreserved for storage of user-defined commands to be executed
during the start-ugequenceThe scriptmay be used for various purposes;luding installation-specificlevice
configuration commandanddevice aliasespatches to correct Open Firmware bugs, or user-installed extensions.
Commands in the script are stored in text form, just as the user would type them at the console.

The script is evaluated onlyuse-nvramrc? istrue

The commandsavedit andnvstore are used to edit the script. The intraline editiegstrokesareusedwithin
the script editor, with the following exceptions:

Keystroke | Description
c Exits thescript editor, returnig to the ren Firmwarecommand integreter. The tenporaty
Bufflt(ar) ispreserved but is not written back to the gcrfUsenvstore afterwards to write it
ack.

<cr> Inserts a newline at the curgmsition and advances to the next line.

o Inserts a newline at the curgmsition and stgs on the current line.

"k If at the end of a lingpins the next line to the current line (i.e., deletes the newline).

“n Moves to the next line of the spriediting buffer.

“p Moves to theprevious line of the sapt editing buffer.

Al Displays the entire contents of the ediibuffer.
nvramrc (-- data-addr data-len) Contents of the script.
use-nvramrc? (-- enabled?) Ifrue , the script is evaluated at system start-up.
nvedit (--) Enter script editor (exit withc).
nvstore (-) Copy contents afivedit temporary buffer into the script.
nvquit () Discard contents afvedit temporary buffer.
nvrecover (-) Attempt to recover lost script contents.
nvrun (-) Execute the contents of theedit temporary buffer.

7.4.5 I/O control

The consoleis the pair of input andutputdeviceshatOpen Firmware uses for communicating wtitle user(for
example, a keyboaraind abit-mapped display). Theonsole deviceareselected after probing, allowirtge use of
plug-in devicedor the console.

After probing, the driverfor devicesnamed bynput-device andoutput-device areopened andconsole
input andoutput is directed to those devicd$e ihandles of the opennput andoutput drivers arsaved as the
values of the $tdin " and “stdout " properties in théchosen node, sdhatclient programsmayinteract with
the user through the console.

89

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

If either of thespecified devicesannot be opened, system-dependent defiavices may be usedstead of the
specified devices.

The console activation process is performed byr$iall-console command.

Normally, install-console is automatically executeduring the Open Firmware start-gpquence just after
probing, but it may be executed explicitly from #eziptif desired.

Before selecting the outpudevice,install-console attempts to create @evice aliasnamedscreen . If a
device alias namedscreen doesnot exist,and if adevice of typedisplay was foundduring probing,
install-console creates an aliascreen representing thdevice patlof the firstdevice of typedisplay
thatwas foundduring probing. Thideature provides a degree of autoconfiguration. Typicallsystem will have
only one display device. the value ofoutput-device is set toscreen , thesystem will automatically locate
that device and use it as the console output device.

Beforethe console is activated, any output produced by Open Firmmas# be directed to a diagnostic output
device. Whether a diagnostic outpulevice exists, how it is choseand how it is accessedre all system-
dependent.

The input andoutput devices may also be modifiedth the input , output , andio commands. These
modifications take place immediately. These commands daffestt input-device and output-device

and hence do naitffectthe choice of console after a subsequeset-all or power cyclgunless present in the
scripf). The action taken on failure to open an input or output device is system-dependent.

90

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

input-device (-- dev-str dev-len) Default console input device.

output-device (-- dev-str dev-len) Default console output device.

stdin (--a-addr) variable containing the ihandle of the console input device.

stdout (--a-addr) variable containing the ihandle of the console output
device.

screen-#columns (--n) Maximum number of columns on console output device.

screen-#rows (--n) Maximum number of rows on console output device.

install-console (-) Select and activate console input and output devices.

input (dev-str dev-len --) Select the indicated device for console input.

output (dev-str dev-len --) Select the indicated device for console output.

io (dev-str dev-len --) Select the indicated device for console input and output.

7.4.6 Security

The security feature allowthe system to be configured $bat apassword is required taccess most commands
from the interactiveeommand interpreter'sk prompt. Severdkevels of securityincluding “none”) arespecified
by the setting ofecurity-mode . Thepassword command is used to set the security password.

password (-) Prompt user to set security password.

security-mode (--n) Contains level of security access protection.
security-password (-- password-str password-len) Contains security password text string.
security-#badlogins (--n) Contains total count of invalid security access attempts.
7.4.7 Reset

This command isused toinitiate a system power-onmeset, thus re-initializing the hardware staied Open
Firmware’s data structures as if a power-on reset had occurred.

reset-all (-) Reset the machine as if a power-on reset had occurred.
7.4.8 Self-test

Any device nodéeither for abuilt-in deviceor aplug-in devicg may define its owselftest diagnostic routine

as one othat device’smethods Many devices havewvo levels ofdiagnostics. The simplestvel is a very brief
“sanity check’thatcould be automatically executeldiring initial probing orwheneverthat device isopenedfor

use by Open Firmware. The more extensieiest routine is executed only upon user command. Execution of
a device’'sselftest routine may be automated by storing the user command stitips

test (“device-specifier<cr>"--) Invoke thselftest routine for the specified device.
test-all (*{device-specifier}<cr>" --) Invokeselftest routines at and below specified node.
selftest-#megs (--n) Number of megabytes of memory to test.
diagnostic-mode? (--diag?) Iftrue , boot from diag sources, perform longer self-tests.
diag-switch? (--diag?) Iftrue , diagnostic-mode? returnstrue .

7.4.9 Client program callback

A client programmay make available a setapplication callbackkcommandghat theuser may execute from the
Open Firmwarecommand interpreterThe client program declares the addresss of its callback procedure with
set-callback. Application callback commands can be executed with the following Open Firmware commands:
callback (“service-name< >" “arguments<cr>" --) Execute specified client program callback routine.
$callback (argn ... argl nargs addr len -- retn ... ret2 Nreturns-1)

Execute specified client program callback routine.

91

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

sync (--) Flush system file buffers, after a program interrupt.
7.4.10 Banner

These commands control the appearance dirthevare banner:

banner () Display the system power-on banner.

suppress-banner (--) Abbreviate system start-up sequence aftesthipt

oem-logo? (-- custom?) Itrue , banner displays custom logo iroem-logo .

oem-logo (-- logo-addr logo-len) Contains custom logolfanner , enabled byoem-logo? .

oem-banner? (-- custom?) Itrue , banner displays custom message in
oem-banner .

oem-banner (-- text-str text-len) Contains custdmnner text, enabled byoem-banner? .

7.4.11 Device tree

Theshow-devs command is a useful tool seethe full device patmames of all or part of theevice treeThe
following is an example of its output:

ok show-devs<cr>

Jaudio@1,f720100

/sbus@1,f8000000

/zs@1,f0000000

/packages@0,0
/sbus@1,f8000000/SUNW,le@0,c00000
/sbus@1,f8000000/SUNW,esp@0,80000
/sbus@1,f8000000/SUNW,esp@0,800000/sd@1,0
/sbus@1,f8000000/SUNW,esp@0,800000/st@5,0
/sbus@1,f8000000/SUNW,cgthree@3,0

show-devs (“{device-specifier}<cr>" --) Show all devices beneath the indicated node.

7.4.11.1 Device alias

devalias (“{alias-name}< >{device-specifier}<cr>" --) Create device alias or display current alias(es).
nvalias (“alias-name< >device-specifier<cr>" --) Create nonvolatile device alias; edittips
$nvalias (name-str name-len dev-str dev-len --) Create nonvolatile device alias; etitifite
nvunalias (“alias-name< >" --) Delete nonvolatile device alias; editdtwpt
$nvunalias (name-str name-len --) Delete nonvolatile device alias; edgdtipt.
“screen ” Standard string for alias created imgtall-console

7.4.11.2 Device tree browsing

Device treebrowsing allows the user to examinand modify individual device tree nodes. Thelevice tree
browsing commandare similar to thdJNIX commands for changinthe workingdirectory within the UNIX
directory treeTheactive packagés thedevice nodehat theuser mayexamineand modify with subsequent node
examination commands. Selectiaglevice node makes it the active package.

When a node is thactive package, user-created Forth commamesadded to the list ofiethodsfor that device,
new propertiesmay be added tthe list of propertie$or thatdevice, dictionarysearch commands will operate on
the node’s list of method§ollowed by systentorth wordg, and thatnode’s methodsan beexecuted agorth
words by typing their names.

92

CORE REQUIREMENTS AND PRACTICES

Examples:

ok dev /zs@1,f0000000<cr>
ok .properties<cr>

IEEE
Std 1275-1994

name zs

reg 00 00 00 01 fO 00 00 00 00 00 00 08
intr 00 00 00 Oc 00 00 00 00

device_type serial

keyboard

port-a-ignore-cd
port-b-ignore-cd

dev ("device-specifier<cr>” --) Make the specified device node the active package.
find-device (dev-str dev-len --) Make the device naty-stringthe active package.

device-end (-) Unselect the active package, leaving none selected.

pwd (--) Display the device path that names the active package.

Is (-) Display the names of the active package’s children.
.properties (--) Display names and values of properties of the active package.

7.4.11.3 Device probing

The probe-all commandprobesall availableplug-in devicesandadds to thelevice treeas appropriate. This
command is normally invoked automaticaliijpyring systemstart-up, butcan bedisabled by executing either
banner orsuppress-banner from thescript

probe-all (--) Probe for all available plug-in devices.

7.5 Firmware Debugging command group

This subclause describesommandsthat assist in thedevelopment of a Forth dfFCode program Most are
interactive commands only and are not generally to be used within a Forth program.

7.5.1 Automatic stack display
Thistool makes it easier fdhe user tseethe stackeffect of executedommandsby automatically displaying the
entire stack jusbeforeeachok prompt. It isuseful when developingorth programs, as inadvertent stack errors

will be more quickly spotted.

showstack (--)
noshowstack (--)

Turn on automatic stack display.
Turn off automatic stack display.

7.5.2 Serial download
This tool enables Forth source code to be downloaded and executed over a serial port.
dl (-) Download and execute Forth text; end with

7.5.3 Dictionary

This subclause describes various productivity ttd$involve the Forth dictionaryMost areuseful for debugging
Forth programs by providing tools for inspecting and altering the dictionary.

93

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

7.5.3.1 Dictionary search

Based on various parameters, thesmmandsearch the dictionary.

.calls (xt--) Display all commands that use the execution token
$sift (text-addr text-len --) Display all command names contaitérgystring
sifting (“text< >" --) Display all command names containiegt

words (--) Display the names of methods or commands.

7.5.3.2 Decompiler

The Forthdecompilerallows the user to'seeinside” any given routine in order teee how it isbuilt. The
decompiler displays the names of the component subwords in the order used to create the routine in question.

If the word being decompiled is an assembly-cat#dinition, the disassemblemill be invoked automatically
(assuming the disassembler is present).

Unfortunately, many of the system routines might not decompile very well since the actual namesmipibreent
routines might have been previously discarded. For these cases, the address of the component routine will be shown
instead of the name.

see (“old-name< >" --) Decompile the Forth commawid-name
(see) (xt--) Decompile the Forth command whose execution toket is
7.5.3.3 Patch

Thesecommandsareused to changthe definition of a command. Although the meypical method othanging
the definition of a command is to edit some Forth sourcefteggt the old definitionandrecompile theedited
source, sometimes a quick patch is used to test a change first.

patch (“new-name< >old-name< >word-to-patch< >"--) Change content®nd-to-patch
(patch) (new-n1 num1? old-n2 num2? xt --) Change contents of command indicated by

7.5.3.4 Forth source-level debugger

The Forthsource-level debugger allows single-steppangl tracing of Forth programeach “step” represents the
execution of on&orth word

In trace modetheword marked for debugging is executdbe process continues witiie nextword called by the
debugged word. In step motee default), the user controls the progress of the exec@@&orethe execution of
each word called by the debugged word, the user is prompted for one of the following keystrokes:

Keystroke Description

<space> Executes the worflist diglayed andoroceeds to the next word.

d Goes down a level; i.e., marks for dgbung the word whose name wasst diplayed and
executes it.

u Goes p a level; i.e., unmarks the word bgidebwgged, marks its caller for debging, and
finishes executig the word that wapreviousy beirg debwgged.

c Continues; i.e., switches from pfing to tracirg, thus tracig the remainder of the execution
of the word beig debwgged.

f Starts a subordinate Forth irgegter. Forth commands mée executed normall When the
resume command is encountered, the ipreter exits and control-returns to the degter at
theplace where thé keystroke was executed.

q Quits; i.e., aborts the execution of the word gelebigged and all its callers, returmjrio the
command integreter.

94

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
debug (“old-name< >" --) Mark the commarad-namefor debugging.

(debug (xt--) Mark the command indicated k&yfor debugging.

stepping (--) Set step mode (default) for Forth source-level debugging.
tracing (--) Set trace mode for Forth source-level debugging.
debug-off (--) Turn off the Forth source-level debugger.

resume (-) Exit from a subordinate interpreter back to the stepper.

7.6 Client Program Debugging command group
This subclause describes various commands used to download and test machine-téirgupgegrams
7.6.1 Registers display

Whenever a machine-language program execution is suspended, the complete state of the machine (particularly, all
machine registers) saved inthe saved-program-statememoryarea. Thisserves twqurposes.: 1) theaved pro-
gramstate can be restored, allowiagecution othe interrupted program to be resumadd 2) thesaved register

values are available from the interpreter for inspection and/or modification for debugging purposes.

CPU registers may bexaminedand modified. Registers may bheritten or read individually or read as a group.
For registers othethan floating-point registers, the registaccess commands operate on memory copies of the
register values instead of directly tre processor registers themselvéle contents of thprocessor registers are
copied tothe saved-program-stateemoryarea when aunning prograntransfers control to Open Firmware,
typically from a user abort, program breakpoint, or severe systerarash (resulting in avatchdog reset). When
Open Firmware resumes executiontlod suspended program (as with gue command), th@rocessor registers
are reloadedrom the saved-program-state asgad any modificationghat theuser has made prior to resumption
of the program will then take effect.

Since normal operation of Open Firmwal@esnot use or affecthe values of floating-point registertheir values
may be accessed “in-place,” rather than from memory copies, at the discretion of the implementor.

The names of the registers depend uponRe type. For garticularCPU type,the register names should be
chosen to bebvious to gperson familiar withthat processor’'s assemblgnguage However,the register names
must not conflict with other Open Firmwavweord names. Onavay of preventing such nameonflicts is to use
register names beginning with “%”, which is not used within any other Open Firmware word names.

Register namesre executableForth words Execution of a register name pushes vh&ie contained irthat
register (or its memory copy) onto the stack. The value may be changed withabenmand, as in the following:

(ff4) to %reg-name

See the processor-specific Open Firmware documents for examples of machine-specific register display commands.

ctrace (--) Display saved call stack (subroutines calls and arguments).
.registers (-) Display saved register values.

fregisters (-) Display floating-point registers (if present).

to (param [old-name< >] --) Changelue ordefer or machine register contents.

7.6.2 Program download and execute

These functions allow a user to download a figtainingassembly code, object codeorth source code, or
anything else. A typical use for these functions is to download some extended diagnostic test routines.

95

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

The syntax and behavior flmad are similar tdoot except that the programlsadedonly and is hoexecuted.
Thus, the behavior dfoot is almost equivalent to the following:

load device-specifier arguments<cr>
go

The difference isthatboot will reset the machinbeforeloading if aclient programhasbeen executed since the
last reset, bubad will not.

load (“{params}<cr>" --) Load a program specified pgrams

go () Execute or resume execution of a program in memory.
state-valid (--a-addr) variable ,true if saved-program-statis valid.
init-program (-) Initialize saved-program-state

7.6.3 Abort and resume

The user may manually invoke thbemmand interpretelby typing an abort sequendéhe abortsequence is imple-
mentation-dependent. Typicallhe abortsequence may be generated Hina break if theconsole is connected
via an asynchronous serial line or bgpecifickey combination if theconsole is connected via a workstatl@y-
board/monitor, or by a hardware event such as a momentary sWitthal consoles connected via network
devicesmay define other protocols to implement the abort sequence.

When a program is suspended by invoking the command interpreter, the contentprotéssor registers are
saved inthe saved-program-statmemoryarea. Execution of theuspended programay be resumed hysing the
go command.

Keystroke Description
<abort> Sugpend the currengl executirg program, saviig processor state in tteavedprogram-state
memoy area, and enter thepén Firmware command infgreter.

go () Execute or resume execution of a program in memory.
7.6.4 Disassembler

The disassembletakes a user-supplied memory addrasd produces an assembly-language interpretation of the
contents of memory in a conventional format.

dis (addr--) Begin disassembling at the given address.
+dis (--) Continue disassembling whetis or +dis last stopped.

7.6.5 Breakpoints

This feature allowghe user to set breakpoints ircléent programand theruse Open Firmware commands when

one of the breakpoints is reached. After inspecting registezsjory, etc.the user can continugxecution of the

client program ochoose from a variety @lingle-stepping options. The useay also cause any sequence of Open
Firmware commands to be executed automatically when a breakpoint is reached, including automatic continuation.

To set breakpoints in a program, fitsad the program intanemory orboot it. Re-enter the Open Firmware
command interpreteif necessary, with the user abort sequence. Set the desired breakpoints and continue or restart
the program.

All of these commands are normadlyecuted directly fronthe command interpreter, botay also be usedithin

colon definitions If a commandhat causes clienprogram executiongp, step , hop, etc.) is executewithin a
colon definition, the remainder of the colon definition will not be executed.

96

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

One possible use of breakpoint commandthin colon definitions is for complex breakpoint set-up sequences.
Anotherpossible use is to set-up conditional executiorpuityinggo or step commands inside aih statement
within a command, and théoadingthat command into théreakpoint or.step command.

.bp (-) Displays a list of all locations that are breakpoints.

+bp (addr--) Adds the given address to the breakpoint list.

-bp (addr--) Removes the breakpoint at the given address.

--bp (--) Removes most recently set breakpoint (repeat if desired).
bpoff (--) Removes all breakpoints from the breakpoint list.

step (--) Executes a single machine-code instruction.

steps (n--) Executestep ntimes.

hop (--) Executes single instruction, or entire subroutine call.
hops (n--) Execute$fiop ntimes.

go (--) Executes or resume execution of a program in memory.
gos (n--) Executego ntimes.

till (addr--) Executes until the given address. Equivalenttp: go.
return (--) Executes until return from this subroutine.

.breakpoint (--) Action performed when breakpoint occurs.

.step () Action performed when a singiep occurs.

.instruction (--) Displays next pending address and instruction.

7.6.6 Symbolic debugging

The symbolic debuggepermitsmemory addresses to be displayed symbolically, with a program label and
offsetinstead of simply a raw addre3$e programabelsare takerfrom thestringtable entries of an appropriate
executable file whethe program idoaded bythe secondary boot programrlhis secondary booprogram can
extract thesymbol table from theexecutable fileand usethe client interfaceto initialize the Open Firmware
symbol table.

After symbolsare loaded, thdisassembledisplays symbolic addressesaddition to numeric addresses)d the
Forth interpreter recognizegmbolnames as thougihey wereForth words Executing asymbolname pushes the
symbol’s value on the stack (where it may be displayedtwé@h~orthword “.”). The Forth interpreter searches for
symbolnames after attempting to recognize numbers; if thersysnholname that ispelledthe same as a Forth
command or a number, the Forth interpreter will recognize the command or number insteasyofbtbi@ame.
To alleviate thigpossible problemthe sym command is providedSymbolname searches aoase-sensitive, in
contrast to searches for Forth commands.

.adr (addr--) Display symbolic form for the given address.
sym (“name<>"--n) Return value of client program symbol “name”.
sym>value (addr len -- addr len false | n true) Defer word to resolve symbol names.
value>sym (nl1--nlfalse | n2 addr len true) Defer word to resolve symbol values.

97

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

7.7 FCode Debugging command group

Theuser interfaceversions of theseCode functionsllow the user to debugCode program®y providing named
commands corresponding to FCode functions.

A systemthatimplements thé-Code Debuggingommand groughall implement commands corresponding to all
of the FCode functions listed in 5.3.2 through 5.3.7, with the same raardeemantics as those FCode functions,
plus the commands given in thealowing list. Furthermore, asystemthat implements the=Code Debugging
command group shall implement the Forth command group.

external (-) Newly created functions will be visible.

headerless (--) Newly created functions will be invisible.

headers () Newly created functions will be optionally visible.
fcode-debug? (-- names?) Ifrue , save names for FCodes witbaders .
open-dev (dev-str dev-len -- ihandle | 0) Open device (and parents) named bydgiiea specifier

begin-package (arg-str arg-len reg-str reg-len dev-str dev-len --)
Set up device tree before creating new node.

close-dev (ihandle --) Close device and all of its parents.
end-package (-) Close the device tree entry set up viiggin-package
execute-device-method (... dev-str dev-len method-str method-len -- ???)

Execute the named method in the package nateedtring
apply (... "method-name< >device-specifier< >” -- ???) Execute named method in the specified package.
decode-bytes (prop-addrl prop-lenl data-len -- prop-addr2 prop-len2 data-addr data-len)

Decode a byte array frompgop-encoded-array

98

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex A
Open Firmware glossary

(normative)

A.1 Description

This annexdescribesthe complete set offForth words FCode functions methods property names and
configuration variabls that aralefined bythis standard. This annabefinesthe behavior of individualords, but

it doesnot specify which of these wordsre required in order to claimonformance with one or more of the
standard interfaces defined by this standard. That information is specified in other clauses.

A.1.1 Collating sequence

The words in this glossary are collated according to the following rules:
— if the word contains alpha characters ([a—z]) plus any numeric or punctuation characters,
all non-alpha characters are ignored (removed) and the “alpha-only” word is ordered alphabetically;

— else, if the word contains only numeric (J0-9]) and punctuation characters,
all punctuation characters are ignored and the resulting “numeric-only” word is ordered numerically;

— else, if the word contains only punctuation characters,
the word is ordered according to its ASCII collating sequence.

Words consisting of only punctuation characters appear first iglthgsary, “numeric-only” wordappear second,
and “alpha-only” words appear last.

A.1.2 Glossary entries

The general form of a glossary entry is as follows:

name (stack comment) Type Codes FCode#
Brief description

Full description
A.1.2.1 Name field

This field givesthe name of thevord that isbeing described. If ther@re multipleglossary entries witthe same
name, each name is followed by a clarifying comment, as shown in the following example:

draw-logo (FCode functioh
draw-logo (package methgd
A.1.2.2 Stack comment field

This field shows the effect of the word on the various Forth se@o#ton otheresources likehe inputbuffer. The
stack comment field is omitted for words to which it does not apply (gaperty names

ANS Forth conventions (as specified in ANSI X3.215-19%8followed for stack comment descriptions, with the
following differences and enhancements.

99

IEEE

Std 1275-1994

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

In the following table, “xyz” means an arbitrary sequence of characters, useifiiigr a descriptivevord (user-
defined) or another existing standard stack abbreviation.

The prefixes “b”, “w”, and “q” are used to indicate 8-bit, 16-bit and 32-bit quantities. The termesnd ???” are
used in place of the ANSI X3.215 terms “i*x” and “j*x”, respectively.

100

X X1 X2 etc.
nnln2n3
XyzZ
u uxyz
nu nul etc.
char
byte bxyz
W WXYZ
quad gxyz
dxyz
udxyz
xyz.lo
xyz.hi
false
true
xXyz?
?xyz?
addr virt
waddr
gaddr
a-addr
phys
phys.lo
phys.hi
len
cnt
addr len
Xyz-str xyz-len
Xyz-pstr
path-str path-len
dev-str dev-len
prop-addr prop-len
xt
phandle
ihandle

?2?7?
<nothing>
“text<delim>"

[text<delim>]

Ixyz/

<> <space>
<eol>
{text}

Xyz-Sys

Arbitrary stack items
Normal signed values
Arbitrary descriptive text
Unsigned value (_0)
Signed or unsigned value
8-bit value representing 1ISO_Latin-1 character
Byte (8-bit value)
Doublet (16-bit value)
Quadlet (32-bit value)
Double numbers (2 stack items; most significant on top of stack)
Unsigned double numbers (2 stack items; most significant on top of stack)
Low significant bits of a data item
High significant bits of a data item
0 (false flag)
-1 (true flag)
Flag (e.g., done? ok? error?); name indicates usage
Flag, but can generate “impure” values (besides 0 or —1)
Address (32-bit virtual)
Doublet(16-bit)-aligned address
Quadlet(32-bit)-aligned address
Var-aligned address
Physical address
Lower cell of physical address
Upper cell of physical address
Length (in bytes)
Count, number of operations
Address and length (2 associated stack items) for memory region
Address and length (2 associated stack items) for string
Address of counted string (first byte contains length)
String for device path
String for device-specifier (device path or alias)
A property-encoded-array
Execution token
Pointer (handle) for a package
Pointer (handle) for an instance of a package
Separates two possible stack effects

Unspecified stack item(s). If encountered on both sides of stack comment, means

same stack items on both sides
Unknown stack item(s)
Zero stack items, i.e., (result | <nothing>)

Input buffer text, parsed when the command is executed. Text delimiter is enclosed

in<.>

Text immediately following on the same line as the command; parsed immediately.

Text delimiter is enclosed in <...>

In FCode evaluation, indicates FCode byte(s) to be read
Space delimiter. Leading spaces are ignored
End-of-line delimiter

Optional text; causes default behavior if omitted

Control-flow stack items; implementation-dependent

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

The topmost stack item is always shown on the right.

Flags are indicated in stack comments“kyz?”, wherexyz indicates the meaning of the flag.tAle result
agrees with the meaning of the flag. Exampleo&fitrue if ok), done?(true if done),error? (true if error).

Return stacleffect(if any) is shown on the same lineasdafter the normal staciffect (foreither compile-time,
run-time, or later-execution), with “R:” to distinguish the return stack, i.e.,
>r (x1--) (Ri--x1)

For words with different behaviors at compile time and run timesuhé&me behavior is shown after tlbtempile-
time behavior, with “C:” to distinguish the compile-time behavior, i.e.,
literal (C:nl--)

(--nl1)

For defining words|ater behavior of thevord thatwas created is showreforethe stackeffect forthe defining
word, with “E:” to distinguish the behavior of the word that was defined, i.e.,
constant (E:--nl1)

(N1 "new-name< >" --)

For Fcode words, behavior of the word during Fcode compilation is shown with “F.”, i.e.,

b(value) (E:--x)
(F:x--)
Here is a worst-case combination of some of the above:
does> (E:...--?2?2?) (created name execution)
(C:sysl --sys2) (compilation)
(--) (R:sysl--) (oes> " execution)
(... - ... a-addr) (R: -- sys2) (created name initiation)

Alternate individual stack items are separated”|bywithout a space oreither side, i.e., (addr len|O result).
Alternategroupsof stack items are separated bywWjth a space on either side, i.e., (addr len false | xt true).

For a text string on the stack, (name-str name4dpetifiesthe addresand lengthrespectively, othe string. The
body of the description sometimes refers to the entire string as simply “name string”.

For a “countedstring” (also known as a “packestring”), in which the length istored as the firdbyte of the
string, the stack comment is (name-pstr).

The following paragraphsiescribethe syntaxused to distinguishetweerthe two forms ofcommandsghat parse
following text. Both forms have identical results if encountered outside of a definition.

Commandghat parse the inpubuffer immediatelyshowthe inputbuffer effect agtext<delimiter>] in thestack
comment. For examplg, ([text<)>]--) could be used as either

.(print this)
or
:foo .(print this) ;

Commands that parse the input buffer ufaar execution shovthe inputbuffer effect astext<delimiter>” in the
stack comment. For exampkstenv ("name< >value< >" --) could be used as either

setenv name value

or
: foo setenv;

101

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

and later,
foo name value

“<eol>" denotes end-of-lineThis isused for commandthat consumethe remainder of their input linéInless
specified otherwise, such commands remieaeling and trailingvhite space fronthe arguments thahey parse
from the input line. For such commands, optional parameters are shown enclosed by {...}, i.e.,

boot ("{params}<eol>" --)

A.1.2.3 Type codes field

This field categorizeshe word that isbeing defined. Some words fatito morethanone categoryEachcategory
is denoted by a single uppercase lefidre field consists of a comma-separated list of such lefldrscategories
and their assigned letters are as follows:

A ANS Forth word. In most caseshe descriptionbody for such words consists only of a one-libeef
description. The full specification is given by ANSI X3.215-1994.

C Compilation only. This command is not allowed outside @flan definition

F This command is also a system-defi&bde functionThe assigneBCode numbefollows.

M Standardmethodnameprovided only incertain packages Behavioral details may depend tme type of
package in which it resides.

N Configuration variable

O Obsolete. Refers to words that are not required for any Open Firmware implementation, but that have existed in

some of Open Firmware’s precursof$ie descriptions of thosgordsare included to assist implementations
that wish to be compatible with previous systems. For additional information, see annex E.

S Standard string; not a commarRkfers tocertain “names’that have specifiedneanings. These names are
used asstring parameters to certain other commalngisare notthemselves Forth commands. Examples are
package nameslevice typesproperty namesdevice aliasesin glossanyistings, standard strings aspelled
with leading/trailingdouble quotegi.e., “string-name ") to distinguish them from Forth commands. The
actual string name does not have double quotes. Standard strings do not have stack cbetaeststhey are
not Forth commands.

T This command isommonly provided as &uilt-in macro in atokenizer Seethe glossary entries for the
sequence of equivalent FCode primitives. Nbit 0, 1, 2, and3 represent th&Code commandsamedo, 1,
2, and3. Literal FCode bytes are represented by 00, 01, 02, etc.
A.1.2.4 FCodet# field
This field gives thé&=Code numbeassigned to this word. It is present only for words with the “F” type code.
A.1.2.5 Description body
This field describes the semantics of the word. The first line of the descHyaiilyris abrief descriptiorthatgives
an overview ofthe wad’s behavior or purpose. Subsequent lines ampliit brief description to present the
detailed specification of the word.
This document usetheword commando mean a Fortkexecution procedure (insteadtbe ANS Forth definition
or named definitioh In addition, thisdocument usethe phrasecommand naméo mean the text name of a

command (instead of the ANS Fowstlord namé.

Within a descriptiorbody, subheadings arsometimes used, denotiriije environment to which thisllowing
paragraphs apply. The subheadings are as follows:

102

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

— Interpretation: Definesthe behavior of thevord when it is encountered hige Forth interpreter when in
interpretation state. This appeardy for words whosénterpretation behavior is different frotheir behavior
when compiled inside a definition (mostly control flow words and literals).

— Compilation: Definesthe behavior of theavord when it is encountered lifie Forth interpreter when in
compilation state. Compilation semantics are gieeity for words whoseompilation behavior is different
from their behavior when compiled inside a definition (mostly control flow words and literals).

— Run-time: Definesthe behavior of avord fragment when the definition into which it hbeen compiled is
executed.

— Execution: Definesthe behavior of thevord when it is executed.his appearsnly for wordsthat have either
separately specified compilation or interpretation semantics.

The majority of Forth words do not have separatelpecified interpretation, compilationand execution
semantics; such words behate samewvay both insideand outside of definitionsand thatone behavior is
given, without a subheading, in the description body.

— FCode evaluation: Definesthe behavior of thevord when it is encountered interpretation state by the
FCode evaluatarThis appearsnly for FCode functionsvhose behavior is differemthen encountered by the
FCode evaluatothanwhen a definition in which they have been compilethter executed. In most cases,
these ard=Code functionghat readone or more followingoytesfrom the FCode program such as literals,
control flow words, and defining words.

— FCODE ONLY: Indicategthat theword isnot required to be present as a user interface commaandif the
FCode Debuggingommand groujis implemented.

— Equivalent to: Defines a possiblanplementation, in terms of other more primitive commandstHercom-
mand being described. It is permissible to use a different implementation if the effective behavior is identical.

— Tokenizer equivalent: Defines a sequence of FCode functithvet, taken as whole, is equivalent tthe word
being defined.Tokenizes typically generatethat sequence whethe word being defined is encountered in
FCode sourceThis subheading appears for words with the “T” type code.

— Tokenizer: Definesthe effect ofthe word onthe subsequent behavior of a tokeniZehis is used for words
that affect certain tokenizer modes, such as those controlling its numeric conversion radix, the size of generated
branch offsets, and the visibility of names for program-defined functions.

— ANS Forth/tokenizer difference: Notes a difference betwee¢he ANS Forth behavior of thevord and the
suggested tokenizer behavior. Most such differeacednevitablebecause an FCogeogram has no textual
input buffer.

— ANS Forth note: Notes a value-added difference wheis standardépecifies a behavior fahe word that is a
superset of the requiredNS Forth behaviorUsually,the addedralue takeghe form of aspecification of the
behavior for conditionsinder whichANS Forth declines to mandate a particular behaior example, the
interpretation behavior of control flow words).

— Example: Gives an example of how the word might be used in a program, with explanatory text.

— Used as:Shows typical, representative usagettef command, butloesnot exclude other formulations. In
some exampleghe ok prompt is shown, emphasizitigat this is thevay the command isised athe Forth
interpreter prompt , as opposed to the way it would be used when compiled inside another definition, e.g.,

ok forget old-name

103

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

— Usage restriction: Indicates the conditions under which twerd mustbehave as specifiedhus imposing
requirements on programs that wish to use the word correctly, but not on the word itself.

— NOTE—Gives additional information that is not part of the specification of the wordhaumight benelpful
in understanding how the word is used or how it can be implemented.
A.2 Specification

A standardsystem oistandardgoackagethatimplements one or more of tfi@lowing wordsshall implement them
with the semantics given below:

! (x a-addr --) AF 0x72
Store item x to cell at a-addr.
See:rl!
" ([text<">< >] -- text-str text-len) T
Gather the immediately following string or hex data.
Interpretation: ([text<">< >] -- text-str text-len)

Parseextdelimited by ® ", with hex-sequence handling as described below. Store the resultingextisty text-lerat

the next available temporary location. The length of the temporary buffer is implementation-dependent but shall be no less
than 80 characters. At least two such temporary buffers shall be provided, using the buffers alternately for successive uses
of " in interpretation state.

Compilation: ([text<">< >] --)

Parsaextdelimited by * ", with hex-sequence handling as described below. Append the run-time semantics given
below to the current definition.

Run-time: (-- text-str text-len)
Returntext-strandtext-lenthat describe a string consisting of the charatgsats

A standard program shall not alter the contents of the string describextisyrandtext-len
Used as:" text"<space>

Hex-sequence handling:

If parsing was terminated by &™in the input buffer (as opposed to the exhaustion of the input buffer), take further
action depending on the value of the next character in the input buffer as follows:

If input buffer is exhausted:

Take no further action
If next character is white space:

Consume that character and take no further action
If next character is(*”:

Consume that character, parse hexadecimal characters delimifetidsydescribed below, append the
characters denoted by those hexadecimal characters,tand resume™”-delimited parsing to further extend
text (This feature is useful for including nonprintable characters in text strings.)

Hexadecimal character treatment:

Treat each pair of hexadecimal digits in the substring betwéehdnd “) ” as the numerical
representation (0x00 .. OXFF) of a character, ignoring nonhexadecimal characters between pairs of
hexadecimal characters. Hexadecimal digits shall be recognized in either uppercase or lowercase.

Otherwise:
The result is implementation-dependent.
Used as:" hello"(0102 ff 80,81)there” (addr len)
Tokenizer equivalent: b(") len-byte xx-byte xx-byte ... xx-byte

NOTE—" is similar toS" in ANS Forth, but with the addition of hex-sequence handling. The final delimitihgtist
be followed by a white space character, in contraSt tavhich does not require a trailing space.

(udl--ud2) AF 0OxC7
Convert a digit in pictured numeric output conversion.

104

CORE REQUIREMENTS AND PRACTICES

#>

' ("old-name< >" -- xt)A,T'

0]

*/

+

End pictured numeric output conversion.

(ud--strlen)

Return execution tokext of a command, parsed later.

Tokenizer equivalent: b(") old-FCode#
ANS Forth/tokenizer difference: In FCode source, cannot be used inside a colon definition.’

Ignore the immediately following text up to closing

Tokenizer equivalent: <nothing>

Convert a number into a text string.

([text<)>] --)

6

(n--strlen)

Perform the conversion according to the valuledse .
Tokenizer equivalent: dup abs <# u#s swap sign u#>

Multiply nulbynu2

Calculatenl timesn2 divided byn3.

Add nultonu2

Add nuto cell ata-addr.

Appendx to data space.

Subtracnu2from nul

Display number (and trailing space).

Display the immediately following text.

Interpretation:

Parseextdelimited by

Compilation:

Same as ANS Forth.

Run-time:

Same as ANS Forth.

and display it.

(nul nu2 -- prod)

(n1n2n3--quot)

(nul nu2 -- sum)

(nu a-addr --)

(x--)

(nul nu2 -- diff)

(nu--)

([text<">] --)
([text<">] --)
([text<">] --)

()

Tokenizer equivalent: b(") len-byte xx-byte xx-byte ... xx-byte type
ANS Forth note: Usage also allowed while interpreting.

IEEE
Std 1275-1994

AF 0xC9
AT
T
AF 0x20
A
AF Ox1E
AF 0x6C
AF 0xD3
AF Ox1F
AF 0x9D
AT

105

IEEE

Std 1275-1994

(

u/ ”

<#

<<

<>

>>

106

([text<)>] --) AT
Display the immediately following text up to delimitiny™

(nl1n2--quot) AF
Divide n1 by n2; return quotient.
S
The root node of the device tree.
See:3.1for a complete description.
(E:...--7?22?) AT

("new-name< >" -- colon-sys)
Begin creation of a colon definition.

Tokenizer equivalent: new-token |named-token [external-token b(:)
ANS Forth/tokenizer difference: In FCode source, cannot be used inside another colon definition.

(colon-sys --) AT,C
End creation of a colon definition.
Tokenizer equivalent: b(;)
(n1n2--less?) AF
Returntrue if nlis less tham2.
(--) AF
Initialize pictured numeric output conversion.
See:(.) and(u.) forexamples of use.
(x1u--x2) T
Synonym foishift
Tokenizer equivalent: Ishift
(N1 n2 -- less-or-equal?) F
Returntrue if nlis less than or equal t@.
(x1 x2 -- not-equal?) AF
Returntrue if x1is not equal tx2.
(x1 x2 -- equal?) AF
Returntrue if x1is equal tok2.
(nl1n2 -- greater?) AF
Returntrue if nlis greater than2.
(N1 n2 -- greater-or-equal?) F
Returntrue if nlis greater than or equal n@.
(x1u--x2) T

Synonym forrshift

Tokenizer equivalent: rshift

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

0x21

Ox3A

0x96

0x43

0x3D

0x3C

0x3B

0x42

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

?

1

0<

0<=

0<>

0>

(a-addr --) AT
Display the number at addressaddr.

Tokenizer equivalent: @.

(a-addr -- x) AF 0x6D
Fetch itenx from cell ata-addr.
See: rl@

(--) AC

Enter interpretation state.
([old-name< >] -- xt)A,T'
Return execution tokext of a command.
Interpretation: ([old-name< >] -- xt)

Skip leading space delimiters. Paod#-namedelimited by a space. Firald-nameand place its execution tok&hon the
stack. An ambiguous condition exist®Iifl-nameis not found.

Compilation: ([old-name< >] --)

Skip leading space delimiters. Pacdé-namedelimited by a space. Firald-nameand append the run-time semantics
given below to the current definition. An ambiguous condition exigtislihames not found.

Run-time: (--xt)
Placeold-namés execution tokext on the stack.

Tokenizer equivalent: b(") old-FCode#

ANS Forth note: Usage also allowed while interpreting.

([rest-of-line<eol>] --) AT
Ignore the immediately following text on this line.

Tokenizer equivalent: <nothing>

Enter compilation state.

(--0) F OxAS
Constant 0.

This number has its own FCode value to save space in FCode binary form.

(n --less-than-07?) AF 0x36
Returntrue if nis less than zero.
('n -- less-or-equal-to-07?) F 0x37
Returntrue if nis less than or equal to zero.
('n -- not-equal-to-0?) AF 0x35
Returntrue if nis not equal to zero.
('nulflag -- equal-to-0?) AF 0x34

Returntrue if nuflag is equal to zero.

This command correctly inverts all flags, including “impure” flags.

('n -- greater-than-0?) AF 0x38
Returntrue if nis greater than zero.

107

IEEE

Std 1275-1994

0>=

1+

2*

2+

2/

2@

108

('n -- greater-or-equal-to-0?)

Returntrue if nis greater than or equal to zero.

(-1)

Constant 1.

This number has its own FCode value to save space in FCode binary form.

(nul--nu2)
Add 1 tonul
Tokenizer equivalent: 1 +
(nul--nu2)
Subtract 1 fronnul
Tokenizer equivalent: 1 -
(~-1)

Constant —1.

This number has its own FCode value to save space in FCode binary form.

(-2)

Constant 2.

This number has its own FCode value to save space in FCode binary form.

(x1 x2 a-addr --)
Store cell pair ad-addr.

(x1--x2)
Shift x1 left by one bit-place. Zero-fill low bit.
(nul--nu2)
Add 2 tonul
Tokenizer equivalent: 2 +
(nul--nu2)
Subtract 2 fromnul
Tokenizer equivalent: 2 -
(x1--x2)

Shift x1 right by one bit-place. High bit unchanged.

(a-addr -- x1 x2)
Fetch cell pair frona-addr.

(-3)

Constant 3.

This number has its own FCode value to save space in FCode binary form.

AT

AT

AF

AF

AF

AF

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

0x39

OxA6

OxA4

OxA7

Ox77

0x59

0x57

0x76

OxA8

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

>>a (x1u--x2) F 0x29
Arithmetic shiftx1 right byu bit-places.

Copy high bits with the highest bit (i.e., sign-extend the high bit).

abort (er--) (Ri =) AF 0x216
Abort program execution; clear stacks.

The version oABORTdefined by the ANS Forth EXCEPTION wordset applies.

abort" (C: [text<">] --) A,C
(...abort? -- ... | <nothing>) (R: ... -- ... | <nothing>)
If flag is nonzero, display text and cabort .

Used while compiling as:(flag) abort" text"
Leading spaces before the text are not ignored and end-of-line is not treated as a delimiting space.
Equivalent to: -2 throw

abs (n--u) AF 0x2D
Return absolute value of

accept (addrlenl --len2) AT
Get an edited input line and store itatdr.

Tokenizer equivalent: span @ -rot expect span @ swap span !

“address ” S
Standardgroperty nameo identify device virtual address.
prop-encoded-array
Arbitrary number ofvirt-addr values with each value encoded waéticode-int

Specifies the virtual addresses of one or more memory-mapped regions on this device. This property is typically used to
report the virtual addresses of regions that the firmware has already mapped so that client programs can reuse those
mappings.

The correspondence between declared addresses and the set of mappable regions for a particular device is device-
dependent.

Usage restriction: A standard package should create atddress ” property after virtual addresses have been assigned
by mapping operations, and shall delete tddress " property when the corresponding virtual addresses are
unmapped.

NOTE—The “address ” property is particularly useful in the following cases:
a) When the mapped region is large, reuse of the virtual address conserves mapping resources.

b) For simple devices (for example, system interrupt control registers), using the firmware’s existing mapping
prevents the client program from having to know about the mapping process.

Used as:
(virt) encode-int
" address" property
See also:free-virtual

“address-bits " S
Standardgroperty nameo indicate number of network address bits.
prop-encoded-array
Integer, encoded wittncode-int

This property, when declared in a€twork ” device, indicates the number of address bits needed to address this device
on the physical layer of its network. The absence of this property indicates the default value of 48.

Used as: d# 48 encode-int " address-bits" property

109

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

“#address-cells i S
Standardgroperty nameo define the package’s address format.

prop-encoded-array

Integer, encoded wittncode-int
This property applies to packages that define a physical address space, i.e., those packatpEndathuhit
methods. The property value specifies the number of cells that are used to encode a physical address within that address
space. The value of this property affects the other functions, commands, and methods that deal with physical addresses. In
a package with adecode-unit " method, a missing#address-cells " property signifies that the number of
address cells is two.
For a given bus, the value of this property should be the same on all machines for which that bus could possibly be used,
even if those machines do not all have the same cell size. Consequently, the value of the property is determined in part by
the smallest cell size among all the machines to which the bus can apply.

An Open Firmware implementation shall operate correctly with values of this property from one to four. An
implementation may support larger values.

See also:map-in , map-low , decode-unit , my-address , my-space , my-unit , encode-phys , and
decode-phys

”

.adr (addr--)
Display symbolic form for the given address.
Display the symbol nearest to (but not greater than) the given address. The symbolic form of an address is usually a
symbol name plus a non-negative numeric offset.
If value>sym returnsfalse , display the address as a humber.
Other aspects of the displayed value are ISA-dependent.
See also:value>sym

again (C: dest-sys --) AT
(--)
End an (infinite)oegin ... again loop.
Compilation: (C: dest-sys --)

Perform the compilation semantics of ANS FORBAIN. Then, if the current definition is temporary and the depth of the
control flow stack is the same as its depth when the temporary current definition was initiated, perform the compilation
semantics of and execute the temporary current definition.

Run-time: ()
Same as ANS Forth.
NOTE—An external event, such as a keyboard abort, is usually necessary to terrbiegite .a again loop.

Tokenizer equivalent: bbranch -offset
ANS Forth note: Also works outside of a definition.

110

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

alarm (xtn--) F 0x213
Executext repeatedly, at intervals afmilliseconds (ms).

Arrange to periodically execute the package metti@d intervals oh ms (to the best accuracy possibleh i§ zero, stop
the periodic execution oft within the current instance context (leaving unaffected any periodic executibthaf was
established within a different instance).

Before each periodic execution of the method, the implementation shall set the current instance to be the same as the
current instance at the time tle&rm was executed and shall restore the current instance to its previous value
afterwards.

Usage restriction: xt must be the execution token of a method whose stack diagram is (--); i.e., it neither expects stack
arguments nor leaves stack results.

Example: Assume the existence of a command nafpexlvitch? that tests a momentary-contact front-panel switch,
returningtrue if the switch is activated. This example shows a way to signségabort when the switch is

activated.
: fp-abort (--) \ Abort if front-panel switch is activated
fp-switch? if
begin fp-switch? 0= until
user-abort
then

1]

[1fp-abort d# 100 alarm \ Test switch every tenth of a second

alias (E:...--?27?) T
("new-name< >old-name< >" --)
Create a new command equivalent to an existing command.
Create a new commamew-namewith the exact behavior of an existing commatwtiname The stack effect for
execution ohew-names the same as that olid-name Subsequently, whemew-namas found, e.g., with™”, the

execution token returned will be that of oldname; similarly, when newname is referenced during the compilation of a new
de

Used as: ok alias new-name old-name
Tokenizer equivalent: <resolution of alias>

In FCode sourcegglias cannot be called from within a colon definition. During tokenization of FCode source, no FCode

is generated when this command is encountered. Instead, the tokenizer will update its own lookup table of existing
commands. Any occurrence of the new command will cause the assigned FCode of the old command to be generated. One
implication is that the new command will not appear in the Forth dictionary after the FCode program is compiled. If this
behavior is undesirable, use a colon definition instead. Note that this function is unretieidemliasegcompare with

devalias)

“laliases " S
The node containing this system’s device alias list.

See:3.5for a complete description.

align (-) A
Allocate dictionary bytes to leave top of dictionary var-aligned.

aligned (nl--nlja-addr) F OxAE
Increasenl as necessary to givevar-aligned address.

The result is the samerifl is already avar-aligned address; otherwise, return the next largenligned address.

alloc-mem (len -- a-addr) F 0x8B
Allocatelen bytes of memory.
Return the virtual addressaddrof a buffer aligned to the most stringent requirements of the particular instruction set

architecture. If the requested operation cannot be perforntiechva shall be called with an appropriate error message,
as withabort"

NOTES—Out-of-memory conditions may be detected and handled properly in the cod§ alldt-mem catch

Memory allocated witlalloc-mem can be freed usinfgee-mem . The memory allocated floc-mem is not
suitable for DMA.

111

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

allot (len--) AT
Allocatelen bytes in the dictionary.
If the requested operation cannot be performeldraw shall be called with an appropriate error message, as with
abort”
Tokenizer equivalent: 0 max 0 ?do O c, loop
NOTE—The “tokenizer equivalent” phrase does not handle negative arguments.
NOTE—Out-of-memory conditions may be detected and handled properly in the cod@ alldt catch

and (x1x2--x3) AF 0x23
Return bitwise logical “and” a1 andx2.

apply (... "method-name< >device-specifier< >" -- ??7?)
Execute named method in the specified package.

Perform the function ofxecute-device-method

If the requested operation cannot be performedraw shall be called with an appropriate error message, as with
abort"

Used as: apply set-tpe-test aliasname
NOTE—Error conditions may be detected and handled properly in the codg]waipiply catch

ascii ([text< >] -- char) T
Generate ASCII code for the immediately following character.
Interpretation: ([text< >] -- char)
Skip leading space delimiters. Parsgtdelimited by a space. Put the integer value of the first charadextoh the
stack.
Compilation: ([text< >] --)
Skip leading space delimiters. Patsgtdelimited by a space. Append the run-time semantics given below to the current
definition.
Run-time: (-- char)

Placechar, the integer value of the first characteteoft, on the stack.

Used as: ascii Boo (0x42)

ascii is similar to ANS ForttCHARand[CHAR], but has the same usage whether interpreting or compiling.
Tokenizer equivalent: b(lit) 00 00 00 xx-byte

auto-boot? (-- auto?) N
If true , automatically executeoot-command after power-on oreset-all
As the next to last step of the Open Firmware start-up sequeacéoiboot? istrue , execute the command string
specified byboot-command .

NOTE—In the usual case, the valuebmfot-command is boot . Usuallyboot transfers control to a client program,
in which case the following step of entering the command interpreter is not performed.

Configuration variable typeBoolean Suggested default valu¢rue .

“available ” S
Standardgroperty nameo defineavailableresources.
prop-encoded-array
Arbitrary number ofiddresslengthpairs.Addresss aphys.lo ... phys.Hist of integers, each integer encoded as

with encode-int . Length(whose format depends on the package) is one or more integers, each encoded as with
encode-int

The value of this property defines resources, managed by this package, that are currently available for use by a client
program. The use afaim andrelease affect the value of this property.

See also:claim , “existing ", “reg ", release

112

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

b(") (--strlen) F 0x12
(F: /FCode-string/ --)
String literal FCode. Followed yCode-string
FCode evaluation: (F: /FCode-string/ --)

Read ar-Code-stringirom the current FCode program. If in interpretation state, copl@uele-stringto a temporary
buffer if necessary and perform the run-time semantics given below. If in compilation state, append the run-time semantics
given below to the current definition.

If a temporary buffer is used, at least two such buffers shall be provided, alternating between the buffers so that at least
two distinct strings can be in use at any given time.

Run-time: (--strlen)
Returnstr andlen describing a string whose characters are the same BEtue-string
FCODE ONLY (Tokenized by, ." , and.()

b() (--xt)FOx11'
(F: /FCode#/ --)
Function literal FCode. Followed WyCode#

FCode evaluation: (F: /IFCode#/ --)

Read ar-Code#from the current FCode program. If in interpretation state, perform the run-time semantics given below.
If in compilation state, append the run-time semantics given below to the current definition.

Run-time: (--xt)
Return the execution toked of the FCode function corresponding to F@ode#
FCODE ONLY (Tokenized byf] and"’)

b(:) (E:...--722?) F 0xB7
(F: -- colon-sys)
Define type of new FCode function as “colon definition”.
FCode evaluation: (F: -- colon-sys)

Define the behavior of the most recently created FCode function to be that of a Forth colon definition, with execution
semantics as given below. Enter compilation state, initiating the current definition, which will be terminated by the
execution of { ”. Enter compilation state and start the current definition, thereby prodociog-sys Append the

initiation semantics given below to the current definition.

The execution semantics of the definition will be determined by the words compiled into the body of the definition.

Initiation: (R: --sys)
Save implementation-dependent informasgysabout the calling definition.
Execution: (of defined word) (...-???)

Perform the body of the definition.
FCODE ONLY (Tokenized by)

b(;) () CF 0XxC2
(F: colon-sys --)
End an FCode colon definition.
FCode evaluation: (F: colon-sys --)

Append the run-time semantics given below to the current definition, terminate the current definition, and enter
interpretation state.

Run-time: (--) (Risys--)
Return control to the caller of the definition containingysis produced by the corresponding)
FCODE ONLY (Tokenized by,)

113

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

banner ()

Display the system power-on banner.
The banner is displayed at a system-dependent screen location (usually either at the top of the screen or at the current
cursor position).

If the current output device haslavice_type property whose value iglisplay ”, display a logo by executing the
current output device'draw-logo method with the following arguments:

Theline# argument, at the system’s discretion, is either O or the line number corresponding to the current cursor
position.

If oem-logo? istrue , theaddrargument is the address returnedleyn-logo . Otherwise, it is the address of
the system-dependent default logo.

Thewidth andheightarguments are both 64.
In any case, display additional information as follows:
If oem-banner? istrue , display the text given by the valuea#m-banner .

Otherwise, display implementation-dependent information about the system, for example, the machine type, serial
number, firmware revision, network address, and hardware configuration.

If executed within thecript, suppress automatic execution of the following Open Firmware start-up sequence:
probe-all install-console banner
See alsosuppress-banner

base (--a-addr) AF OxAO0

variable containing the current numeric conversion radix.

Use this value for all subsequent numeric conversion, except where noted otherwise.
During tokenizing of FCode source, changes to this value do not affect evaluation of subsequent numeric input text.
ANS Forth/tokenizer difference: ANS Forth has no separate “tokenizing” behavior.

bbranch (--) F 0x13

114

(F: /FCode-offset/ --)
Unconditional branch FCode. Followed B¢ode-offset

FCode evaluation: (F: /FCode-offset/ --)
ReadFCode-offsetwhose target is the matchibg<mark) or b(>resolve) , from the current FCode program.
If FCode-offsets negative, corresponding to a backward branch: (C: dest orign .. origl -- orign .. origl)

Append the run-time semantics given below to the current definition, resolving the backward refeseiten, if

the current definition is temporary and the depth of the control flow stack is the same as its depth when the temporary
current definition was initiated, perform the FCode evaluation semanti{s of and execute the temporary current
definition.

If FCode-offsets non-negative, corresponding to a forward branch:
If in interpretation state:

Read and discardCode-offseR bytes (if theFCode-offsesize is 16 bits) oFCode-offsetl bytes (if the
FCode-offsesize is 8 bits) from the current FCode program and take no further action.

If in compilation state: (C: origl -- orig2 origl)
Put the location of a new unresolved forward referemige2 onto the control flow stack underneaitigl.

Append the run-time semantics given below to the current definition. The semantics will be incomplete until
orig2 is resolved (e.g., by(>resolve)).

Run-time: (--)
If FCode-offsets negative:
Continue execution at the location specifiecdegt
If FCode-offsets non-negative:
Continue execution at the location given by the resolutianigg.

NOTE—TheFCode-offsehegative case is used to implement the Forth weagdin andrepeat . For repeat , the
FCode number fdo(>resolve) (resolving origl) immediately followsbbranch and its offset. In either casedest
corresponds to the precedingcmark) .

NOTE—The FCode-offsehon-negative case is used to implement the Forth ®ised , in which case the FCode
number fob(>resolve) (resolving origl) immediately followsbbranch and its offset, and somewhat later another
b(>resolve) (resolving orig2) follows the sequence corresponding to the Forth source codelaéer

FCODE ONLY (Tokenized byagain , repeat , andelse)

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

b?branch (don't-branch? --) F 0x14
(F: /FCode-offset/ --)
Conditional branch FCode. Followed BZode-offset

FCode evaluation: (F: /FCode-offset/ --)
ReadFCode-offsetwhose target is the matchibg<mark) orb(>resolve) , from the current FCode program.
If FCode-offsets negative, corresponding to a backward branch: (C: dest orign .. origl -- orign .. origl)

Append the run-time semantics given below to the current definition, resolving the backward refeseiten, if
the current definition is temporary and the depth of the control flow stack is the same as its depth when the temporary
current definition was initiated, perform the FCode evaluation semanti{s of and execute the temporary current

definition.
If FCode-offsets non-negative, corresponding to a forward branch:
If in interpretation state: (x--)

If all bits of x are zero, read and disc&@ode-offseR bytes (if the=Code-offsetize is 16 bits) oFCode-
offset-1 bytes (if the=Code-offsesize is 8 bits) from the current FCode program and take no further action.
Otherwise, take no further action.

If in compilation state: (C: --orig)

Put the location of a new unresolved forward referemigeonto the control flow stack. Append the run-time
semantics given below to the current definition. The semantics will be incompleterignid resolved (e.g., by
b(>resolve)).

Run-time: (x--)
If FCode-offsets negative:

If all bits of x are zero, continue execution at the location specifiedely
If FCode-offsets non-negative:

If all bits of x are zero, continue execution at the location specified by the resolutioig.of
NOTE—TheFCode-offsehegative case is used to implement the Forth waotitl
NOTE—TheFCode-offsehon-negative case is used to implement the Forth wiorgmdwhile .
FCODE ONLY (Tokenized byntil , while , andif)

b(buffer:) (E: -- a-addr) F 0xBD
(F: size --)
Defines type of new FCode functionlasfer:
FCode evaluation: (F: size --)
If instance has been executed since the last executidflnfffer:) , b(variable) ,b(value) ,or

b(defer) , allocatesizebytes of storage in the current package’s zero-filled data area; otherwise, allocate the storage in
data space. Define the behavior of the most recently created FCode function to have the execution semantics given below.

Execution: (of defined word) (-a-addr)
Returna-addr, the address of the storage associated with the defined word.
FCODE ONLY (Tokenized bybuffer:)

b(case) (sel --sel) F 0xC4
(F: =)

Begin acase (multiple selection) statement.

FCode evaluation: (F:--)
Perform the interpretation or compilation semanticsask .
FCODE ONLY (Tokenized bycase)

115

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
b(constant) (E:--n) F OxBA
(F:n--)
Defines type of new FCode function@mstant
FCode evaluation: (Fin-)
Define the behavior of the most recently created FCode function to have the execution semantics given below.
Execution: (of defined word) (--n)

Placen on the stack.
FCODE ONLY (Tokenized byonstant)

b(create) (E: -- a-addr) F 0xBB
(F: =)
Defines type of new FCode function@egate word.

FCode evaluation: (F:--)

If the data space pointer is not aligned, reserve enough data space to align it. This address defines the most recently
created word’s data fieléb(create) does not allocate data space in the created word’s data field. Define the behavior
of the most recently created FCode function to have the execution semantics given below.

Execution: (of defined word) (-a-addr)
Placea-addr, the address of the defined word’s data field, on the stack.
FCODE ONLY (Tokenized byreate)

b(defer) (E:...--722?) F 0xBC
(F: =)
Defines type of new FCode function@efer word.
FCode evaluation: (F:--)
If instancehas been executed since the last executiduflnfffer:) , b(variable) ,b(value) , orb(defer)

allocate sufficient storage for an execution token in the current package’s initialized data area; otherwise allocate the
storage in data space. Set the initial value of that storage to the execution token for a definition that, if executed, will
display a message indicating execution of an unitialized defer word. Define the behavior of the most recently created
FCode function to have the execution semantics given below.

Execution: (of defined word) (... -???)
Execute the definition currently associated with the defined word.

The definition associated with the defined word can be changed later by placing the execution token of the new definition
on the stack and executing the FCode function corresponding to the selgitepceFCode# , whereFCode#is the
FCode number of the defined word.

FCODE ONLY (Tokenized bydefer)

b(do) (limit start --) F 0x17
(F: /FCode-offset/ --)
Begin FCodalo .. loop . Followed byFCode-offset

FCode evaluation: (F: /FCode-offset/ --)

ReadFCode-offsetwhose target is the matchibgoop) orb(+loop) , from the current FCode program and perform
the interpretation or compilation semanticslof

FCODE ONLY (Tokenized bydo)

b(?do) (limit start --) F 0x18
(F: /FCode-offset/ --)
Begin FCode?do .. loop . Followed byFCode-offset

FCode evaluation: (F: /FCode-offset/ --)

ReadFCode-offsetwhose target is the matchibgoop) orb(+loop) , from the current FCode program and perform
the interpretation or compilation semanticdb .

FCODE ONLY (Tokenized by?do)

116

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

begin (C: -- dest-sys) AT
(--)
Begin a conditional loop.
Interpretation: (C: -- dest-sys)

Enter compilation state, initiating a temporary current definition in a region of memory other than the data space. Then
perform the compilation semantics of ANS FABEEGIN.

Compilation: (C: -- dest-sys)
Same as ANS Forth.
Run-time: (--)

Same as ANS Forth.
Tokenizer equivalent: b(<mark)
ANS Forth note: Also works outside of a definition.

begin-package (‘arg-str arg-len reg-str reg-len dev-str dev-len --)
Set up device tree, before creating new node.

Perform the following:

— Open the parent device (and all higher parents) epégn-dev and the parameteev-string If the call to
open-dev returns a zero, terminate execution with an appropriate error message, asontith .

— Setmy-self to the new pareribhandle

— Set theactive packagéo the parent device.

— Callnew-device to open the child device node.

— Callset-args to set arguments for the child by using the paramaterstring andreg-string

dev-stringis the device path string (either a full device pathname, or a pre-defined device alias) of the parent of the child
node about to be created.

reg-stringis theunit addressstring (i.e., “3,1000") and contains the text representation of the physical address of the
child (within the address space of the parent device). The numerical representation of this physical address can be
returned within the child with theay-address andmy-space FCodes.

arg-stringis theinstance-argumentstring and contains the value that can be returned within the child with the
my-args FCode.

Used as:0 0 " 3,2000" " /sbus" begin-package

behavior (defer-xt -- contents-xt) F OxDE
Retrieve execution behavior oflafer word.

This command is used to obtain the execution contentdefea word. A typical use would be to retrieve and save the
execution behavior of theefer word, set thelefer word to a new behavior, and then later restore the old behavior.

Used as: ['] defer-name behavior (contents-xt)

bell (--0x07) F OxAB
ASCII code for “bell” character.

b(endcase) (sel | <nothing> --) F 0xC5
(F:~)

End acase (multiple selection) statement.

FCode evaluation: (F:--)
Perform the compilation semanticsasfdcase .
FCODE ONLY (Tokenized byendcase)

117

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

b(endof) (--) F 0xC6
(F: /FCode-offset/ --)
FCode forendof in case statement. Followed byCode-offset

FCode evaluation: (F: /FCode-offset/ --)

ReadFCode-offsetwhose target is the matchibgendcase) , from the current FCode program and perform the
Compilation semantics @ndof .

FCODE ONLY (Tokenized byendof)

between ('n min max -- min<=n<=max?) F 0x44
Returntrue if nis betweemmin andmax inclusive.

b(field) (E: addr -- addr+offse t) F OxBE
(F: offset size -- offset+size)
Defines type of new FCode functionfasd

FCode evaluation: (F: offset size -- offset+size)

Define the behavior of the most recently created FCode function to have the execution semantics given below. Return the
sum ofoffsetandsize

Execution: (of defined word) (‘addr -- addr+offset)
Return the sum adddr andoffset
FCODE ONLY (Tokenized byield)

bl (--0x20) AF 0xA9
ASCII code for “ ” (blank) character.

blank (addrlen --) AT
Setlen bytes beginning addrto the value 0x20.

Tokenizer equivalent: bl fill

b(leave) (F:--) F 0x1B
Exit from ado ... loop

FCode evaluation: (F:--)
Append the execution semanticdedive to the current definition.
FCODE ONLY (Tokenized byeave)

blink-screen (--) F 0x15B
defer , flash the screen.
blink-screen is one of thelefer words of the display device interface. The terminal emulator package executes

blink-screen when it has processed a character sequence that calls for ringing the console bell, but the console input
device package has ndrig-bell " method.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Cause some momentary discernible effect, afterwards leaving the screen in the same state as before.
See also:to , fb8-install

118

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

b(lit) (--n) F 0x10
(F: /IFCode-num32/ --)
Numeric literal FCode. Followed ByCode-num32

FCode evaluation: (F: /IFCode-num32/ --)

Read ar-Code-num32rom the current FCode program. If in interpretation state, perform the run-time semantics
given below. If in compilation state, append the run-time semantics given below to the current definition.

Run-time: (--n)
Returnn, the signed number with the same numerical value @Qbhde-num32
FCODE ONLY (Tokenized by numbers)

bljoin (bl.lo b2 b3 b4.hi -- quad) F Ox7F
Join four bytes to form a quadlet.

The high bits of each of the four bytes must be zero.

“block ” S
Random-access, block-oriented device type.

Standard string value of theévice_type " property for disk (i.e., random-access, fixed-length block storage) devices.
A standard package with thidévice_type " property value shall implement the following methods.
open, close ,read ,seek ,load

A standard package with thidévice_type " property value should implement the following method if the associated
device is writeable.

write
A standard package with thidévice_type " property value may implement additional device-specific methods.

NOTE—Such packages often use tlieblocker ” support package to implement ttead , write , andseek
methods and thedisk-label " support package to implement tloed method.

block-size (-- block-len) M
Return “granularity” for accesses to this device.

Return the “granularity” in bytes for accesses to this device. Perform all transfers to the device in multiples of this size.

A returned value of 1 signifies that arbitrary transfer sizes are supported (up to the maximum specified by
max-transfer).

b(loop) (--) F 0x15
(F: /FCode-offset/ --)
End FCodalo .. loop . Followed byFCode-offset

FCode evaluation: (F: /FCode-offset/ --)

ReadFCode-offsetwhose target is the matchibgdo) orb(?do) , from the current FCode program and perform the
compilation semantics édop . Then, if the current definition is temporary and the depth of the control flow stack is the
same as its depth when the temporary current definition was initiated, perform the FCode evaluation setmghtics of
and execute the temporary current definition.

FCODE ONLY (Tokenized byoop)

b(+loop) (delta --) F 0x16
(F: /FCode-offset/ --)
End FCodalo .. +loop . Followed byFCode-offset

FCode evaluation: (F: /FCode-offset/ --)

ReadFCode-offsetwhose target is the matchib¢do) orb(?do) , from the current FCode program and perform the
compilation semantics afloop . Then, if the current definition is temporary and the depth of the control flow stack is the
same as its depth when the temporary current definition was initiated, perform the FCode evaluation setmghtics of
and execute the temporary current definition.

FCODE ONLY (Tokenized byloop)

119

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

b(<mark) (F:--) F 0xB1
Target of backwartibranch orb?branch .

FCode evaluation: (F:--)
Perform the interpretation or compilation semantidsegfin .
FCODE ONLY (Tokenized bybegin)

body> (a-addr -- xt) F 0x85
Convert data field address to execution token.

>body (xt -- a-addr) AF 0x86
Convert execution token to data field address.

b(of) (sel of-val -- sel | <nothing>) F 0x1C
(F: /FCode-offset/ --)
FCode forof in case statement. Followed byCode-offset

FCode evaluation: (F: /FCode-offset/ --)

ReadFCode-offsetwhose target is the matchibgendof) , from the current FCode program and perform the
compilation semantics aff .

FCODE ONLY (Tokenized byof)

boot ("{param-text}<eol>" --)
Load and execute a program, specifiegppayam-text
Perform whatever system-dependent steps are necessary to ensure a suitable state for booting, in the event that user

actions have interrupted the normal start-up procedure. Then perform the funébiad oh order to load a client
program from the device specified by the command line arguments.

If the loading process succeeds, perform the functigodb execute the client program.
Used as:

ok boot

ok boot device-specifier
ok boot arguments

ok boot device arguments

boot-command (--addrlen) N
Command executed #uto-boot? istrue .

The value of this configuration variable is a string that is evaluated aswailirate
Configuration variable typestring[32]. Suggested default valuboot .

boot-device (-- dev-str dev-len) N
Defaultdevice-naméor boot , if diagnostic-mode? is false

dev-stringis adevice-specifieor a list ofdevice-specifiersas described iload .
Configuration variable typestring[32]. Suggested default valuelisk .

boot-file (-- arg-str arg-len) N
Defaultargumentdor boot , if diagnostic-mode? is false

Configuration variable typestring[32]. Suggested default value: an empty string.

“bootargs " S
Standardgroperty nameontaining the chosen boot commamguments
prop-encoded-array:
Text string, encoded wittncode-string

This property appears in tthehosen node if aboot orload command has been issued since the firmware was last
reset. Its value is thergumentdield of the most recerftoot command.

120

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

“bootpath ” S
Standardgroperty nameontaining the chosen bod¢vice path

prop-encoded-array
Text string, encoded wittncode-string

This property appears in tthehosen node if aboot orload command has been issued since the firmware was last
reset. Its value is the compleatevice pattio which thedevice-specifieof that command was resolved.

bounds (ncent--n+cntn) F OxAC
Prepare arguments fdo or ?do loop.

Equivalent to: over + swap

+bp (addr--)
Add the given address to the breakpoint list.

-bp (addr--)
Remove the breakpoint at the given address.

~bp (-)
Remove most recently set breakpoint (repeat if desired).

.bp (--)
Display a list of all locations that are breakpoints.

bpoff (--)
Remove all breakpoints from the breakpoint list.

.breakpoint (--)
Action performed when breakpoint occurs.

Execute this command whenever a breakpoint occurs. The default behaviainisttbetion command.

.breakpoint is adefer command, alterable with the command. For example, the following example shows how
to display registers at every breakpoint.

Use as:[] .registers to .breakpoint

b(>resolve) (--) F 0xB2
(F:-)
Target of forwardbranch orb?branch .
FCode evaluation: (F:--)

Perform the compilation semanticstbén . Then, if the current definition is temporary and the depth of the control flow
stack is the same as its depth when the temporary current definition was initiated, perform the FCode evaluation semantics
of b(;) and execute the temporary current definition.

FCODE ONLY (Tokenized byelse , then , andrepeat)

bs (-- 0x08) F OxAA
ASCII code for “backspace” character.

121

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

b(to) (x-) F 0xC3
(F: /IFCode#/ --)
FCode for settingalue s anddefer s. Followed byFCode#

FCode evaluation: (F: /IFCode#/ --)
ReadFCode#from the current FCode program.
If in interpretation state:

Perform the execution semantics given below.
If in compilation state:

Append the execution semantics given below to the current definition.
Execution: (x--)

Set the value associated with the definition correspondif@tmle#to x. The interpretation of x and the method of
storage depend on the type (ealye ordefer) of the definition being stored to.

FCODE ONLY (Tokenized byo)

buffer: (E: -- a-addr) T
(len "new-name< >" --)
Creates a named data buffeew-nameeturns address.
Creates a data variable nanreiv-nameand allocates a data bufferlef bytes (usingilloc-mem). Upon later
execution ohew-namereturn the addressaddr of the first byte of the buffer.
Used as: ok 100 buffer: new-name
Later used as: 55 new-name 20 + c!
Tokenizer equivalent: new-token |named-token |external-token b(buffer:)
In FCode sourcdquffer: cannot be used inside a colon definition.
NOTE—The memory allocated dyuffer: is not suitable for DMA.

b(value) (E:--x) F 0xB8
(F:x--)
Defines type of new FCode function\adue .
FCode evaluation: (F:x-)
If instance has been executed since the last executidflnfffer:) , b(variable) ,b(value) ,or

b(defer) , allocate one cell of storage in the current package’s initialized data area; otherwise, allocate the storage in
data space. Set the initial value of that celt.tDefine the behavior of the most recently created FCode function to have
the execution semantics given below.

Execution: (of defined word) (--x)

Return the valug associated with the defined word.

The value associated with the defined word can be changed latéda(twith .
FCODE ONLY (Tokenized byalue)

b(variable) (E: -- a-addr) F 0xB9
(F: =)
Defines type of new FCode function\aiable
FCode evaluation: (F:--)
If instance has been executed since the last executidulnfffer:) , b(variable) ,b(value) ,or

b(defer) , allocate one cell of storage in the current package’s initialized data area; otherwise, allocate the storage in
data space. Set the initial value of that cell to zero. Define the behavior of the most recently created FCode function to
have the execution semantics given below.

Execution: (of defined word) (--a-addr)
Placea-add, the address of the allocated cell, on the stack.
FCODE ONLY (Tokenized byariable)

bwjoin (b.lo b.hi--w) F 0xBO
Join two bytes to form a doublet.

The high bits of each of the two bytes must be zero.

122

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

“ byte ” S

Sequential-access, record-oriented device type.

Standard string value of theévice_type ” property for tape (i.e., sequential-access, record-oriented storage) devices.
A standard package with thidévice_type " property value shall implement the following methods.
open, close ,read ,seek ,load

A standard package with thidévice_type " property value should implement the following method if the associated
device is writeable.

write
A standard package with thidévice_type " property value may implement additional device-specific methods.
Additional Requirements for tleeek method:

Seek to the byte numberpds.lowithin the tape filgpos.hi If pos.loandpos.hiare both zero, rewind the tape.
Returnfalse if successfultrue if not successful.

Additional Requirements for tHead method:
Read a client program from the tape file specified by the value @igtemnce-argumertext string (as returned by
my-args). That value is the string representation of a decimal integer. ifistence-argumerstring is empty, use
tape file zero.
Place the program at memory addr@addr and return its lengtten.
NOTE—Such packages often use tlieblocker ” support package to implement ttead , write , andseek
methods.

byte-load (addr xt --) F 0x23E

c!

Interpret FCode beginning at locatiaddr.

Save the state of the FCode evaluator, including the location of the next byte to be interpreted, the internal state variable
fcode-endthe size ofFCode-offsetsthe assignments of FCode numbers to program-defined FCode functicsys et
value, and the specification of the current FCode access procedure.

Set the internal state varialftmde-endo false. Sespread the initial distance between successive FCode bytes, to one.

If xtis one, set the FCode access procedure@. Otherwise, set the FCode access procedure to the definition whose
execution token igt.

Assign the FCode functidierror to all FCode numbers in the program-defined range. Evaluate the FCode program,
reading successive FCode bytes by repeated execution of the FCode access procedure as described below, continuing
evaluation untifcode-encbhecomes true (e.g.,as a result of the executiemad).

The stack effect of the FCode access procedure is (addrl -- byte)addelés a number that selects the FCode byte
byte its precise meaning depends on the FCode access procedure. The first time that a particular invocation of
byte-load executes the FCode access procedutdlis the same asddr. Each subsequent timagdrlexceeds the
previous value oaddrlby the current value afpread

When evaluation of this FCode program ceases, ahifaav that is not caught at a lower level is executed during the
FCode evaluation, restore the state of the FCode evaluator to the saved values.

NOTE—Dbyte-load does not itself create a new device node as a “container” for any properties and methods defined by
the FCode program thhyte-load evaluates. If, as is commonly the case, it is desireable to create such a device node,
that must be done as a separate step, for example by exewitirdevice andset-args before executing

byte-load , and by executinfinish-device afterwards. Ibyte-load s to be executed as a user interface

command, instead of as an FCode function, additional setup is usually necessary before eeudengce ; see
begin-package for more information.

(byte addr --) AF 0x75
Store byte taddr.
See:rb! .
(byte --) AF 0xDO
Compile a byte into the dictionary.
(code-sys --)

End creation of machine-code command; will return to caller.

Assemble code so that the created machine-code command, when executed, returns control to the calling routine.
code-syss balanced by the correspondirape orlabel

123

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Ic (--n) F Ox5A
The number of address units to a byte: one.

[c* (nul--nu2) T
Synonym forchars .

Tokenizer equivalent chars

c@ (addr -- byte) AF 0x71
Fetch byte fronaddr.

See: rb@.

ca+t (addrlindex -- addr2) F Ox5E
Incrementaddrl by indextimes the value oft .

cal+ (addrl -- addr2) T
Synonym forchar+ .

Tokenizer equivalent: char+

callback ("service-name< >" "arguments<eol>" --)

Execute specified client program callback routine.

Skip leading space delimiters. Passevice-namelelimited by space. Paraggumentsielimited by end-of-line. If a client
program callback handler has not been installed (as witbetheallback client interface service), signal an error by
executinghrow with a system-dependent nonzero argument. Otherwise, call the client program callback handler with an
argument array containing the following items:

Cell Name Contents

service The address of a null-terminated sgrizontainirg service-name.
N-args 1

N-returns 1

argl The address of a null terminated gfrgontainirg arguments.
retl <One uninitialized return value ceH.

When the handler returnthrow the value returned in thretl cell.

NOTE—With an argument of zerthrow is effectively ano-op thus, to return successfully, the application callback
handler should return a zero in ttel cell.

124

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

$callback (‘argn ... argl nargs addr len -- retn ... ret2 Nreturns-1)
Execute specified client program callback routine.
If a client program callback handler has not been installed (as wilettoallback client interface service), signal

an error by executinthrow with a system-dependent nonzero argument. Otherwise, call the client program callback
handler with an argument array containing the following items:

Cell Name Contents

service The address of a null-terminated strizontainirg theapplication callback
service-namelefined ly addr, len

N-args nargs

N-returns <An integer with minimum value 6. See below.>

argl, ..., argN argl ... agn

retl, ..., retN <A minimum of 6 uninitialized return value cells. See below.>

The argument array shall have at least six cells available for return valués, retgirnsshall be set to the number of
such cells before calling the handler.

When the handler returniirow the value contained in thietl cell. Ifthrow returns (i.e., ifetl contained zero),
push onto the data stack the return vaheg (pushed first) througret2 (pushed last), followed by the number of return
values, which is one less than the value contained iNtheturnscell.

NOTE—The value inN_returnsafter the handler returns will not necessarily be the same as the value that was placed
there prior to calling the handler. Prior to calling the handler, it indicates the number of available cells for return values,
and after calling the handler, it indicates the number of return cells actually returned by the handler.

$call-method (... method-str method-len ihandle -- ???) F 0x20E
Execute the method nametkethod-stringn the instancéhandle

Save the value afiy-self |, setmy-self toihandle(thus makinghandlethe current instance), execute the indicated
method, and restoray-self to the saved value. If the called package has no such method, signal an erforowith

call-package (... xtihandle -- ??7?) F 0x208
Execute the methaxt within the instancéhandle

Save the value ohy-self , setmy-self toihandle(thus makinghandlethe current instance), execute the metkipd
and restoreny-self to the saved value.

xtis typically obtained wittiind-method

$call-parent (... method-str method-len -- ??7?) F 0x209
Execute the method nametethod-stringn the parent instance.

Equivalent to:my-parent $call-method
If the called package has no such method, signal an errothnativ .

calls (xt--)
Display all commands which use the execution token

Used as:[] test-name .calls

NOTE—Only direct usages are found. Thusidime?2 callsnamel andname3 callsname?2, then:
[1namel .calls

will list name2 but notname3.

carret (--0x0D) T
ASCII code for “carriage-return” character.

Tokenizer equivalent: b(lit) 00 00 00 0xOD

125

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
case (C: -- case-sys) AT
(sel --sel)

Begin acase (multiple selection) statement.

Interpretation: (sel --sel)

Enter compilation state, initiating a temporary current definition in a region of memory other than the data space. Then
perform the compilation semantics of ANS FOASE

Compilation: (C: -- case-sys)
Same as ANS Forth.
Run-time: (sel --sel)

Same as ANS Forth.
Tokenizer equivalent: b(case)
ANS Forth note: Also works outside of a definition.

catch (... xt--??? error-code | ??? false) AF 0x217
Execute command indicated ki Returnthrow result.

The value oimy-self shall be included within the exception frame.
ANS Forth note: also savemy-self

cell+ (addrl -- addr2) AF 0x65
Incrementaddrl by the value ofn .

cells (nul--nu2) AF 0x69
Multiply nulby the value ofn .

char ("text< >" -- char) A
Generate ASCII code for next character from input buffer.

char+ (addrl -- addr2) AF 0x62
Incrementaddrl by the value ofc .

[char] (C: [text< >] --) AC
(--char)
Generate ASCII code for next character from input buffer.

“character-set i S
Standardgroperty nameo specify the character set for this device.
prop-encoded array
Text string, encoded wittncode-string
This standard property applies to packages implemendeg¢e_type 7, “serial 7, or “display ". The value of
this property defines the character set for this device. A typical vall®8@3859-1 ". The character set names are as
defined by the X Registry for use with the X Window System.
Used as:" ISO8859-1" encode-string " character-set" property
For more information about the X Registry contact:
Bob Scheifler
Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

126

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

char-height (-- height) F 0x16C

value , return the height of a font character in pixels.
char-height is avalue that is used by theély1 ” and “fb8 ” frame-buffer support packages. It denotes the height of
a character in pixels.

Any standard package that uses one of the frame-buffer support packages shallaetethigrior to executing either
fbl-install or fb8-install . That is typically done by executisgt-font

chars (nul--nu2) AF 0x66

Multiply nulby the value ofc .

char-width (-- width) F 0x16D

value , return the width of a font character in pixels.
char-width is avalue thatis used by theli1l ” and ‘fb8 ” frame-buffer support packages. It denotes the width of a
character in pixels (the frame-buffer support packages use fixed-width fonts, thus all characters are the same width).

Any standard package that uses one of the frame-buffer support packages shallaetethigrior to executing either
fbl-install or fb8-install . That is typically done by executisgt-font

child (phandle.parent -- phandle.child) F 0x23B

Return the phandle of the first child node of parent.

Phandle.childs the node identifier of the node that is the first child of the device pluatedle.parentor zero if there are
no children.

“/chosen ” S

The node containing run-time choices

See:3.5for a complete description.

claim ([addr...]size ... align -- base ...) M

Allocate (claim) addressable resource.

Allocatessize ..(whose format depends on the package) bytes of the addressable resource managed by the package
containing this method. Hlignis zero, the allocated range begins at the addis... (whose format depends on the
package). Otherwiseddr ...is not present, and an aligned address is automatically chosen. The alignment boundary is
the smallest power of two greater than or equal to the valaiggof analign value of 1 signifies one-byte alignment.

Base ..(whose format is the sameaddr ..) is the address that was allocated (equalir ...if align was 0).

If the operation fails, useékrow to signal the error.
Claim does not automatically create an address translation for the allocated resource. See 3.6.5.

NOTE—This method provides fine-grained control over the allocation of addressable resources. In general, such control is
needed only by system-specific programs. General-purpose memory allocation can be accomplished in a portable fashion
by alloc-mem

See also:alloc-mem |, “available ", free-mem , release.

clear (een =)

Empty the stack.

This command is useful as a development tool. However, it is almost always inappropriate to use this command in a
program.

close (--) M

Close this previouslgpen ed device.

Restore the device (which has been previoaphn ed) to its “not-in-use” state. Typical behavior is to turn off the device,
unmap it, and deallocate any resources that were allocatgueby

Any standard package that hasopen method shall also haveckbse method.

NOTE—When closing an instance chain, a particular instaride&® method is executed before its parent instances
are closed, so the parent’s methods can still be used during the executaseof

127

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

close-dev (ihandle --)
Close device and all of its parents.

close-package (ihandle --) F 0x206
Close the specified package instance.

Close the instance identified byandleby calling the packagetdose method and then destroying the instance.

code (E:...--?227?) A
("new-name< >" -- code-sys)
Begin creation of machine-code command called-name
Interpret commands which follow as assembler mnemonics.
Note that if the assembler is not installedde is still present, except that machine-code must be entered into the

dictionary explicitly by value, i.e., with, , w,, |, , and, .
The machine-code command is terminated bycther end-code commands.
Used as:

ok code new-name _
ok (‘assembler mnemonics)
ok c;

Later used as:
new-name (execute machine-code)
code-syss balanced by the correspondirig or end-code .

column# (-- column#) F 0x153
value , return the current cursor column number.

Return the current horizontal position of the text cursor.

NOTE—A value of zero represents the leftmost cursor position dettiavindownot the leftmost pixel of the frame-
buffer.

See: window-left for more details.

#columns (-- columns) F 0x151
value , return number of columns of texttiext window

#columns is avalue that is part of the display device interface. Téreinal emulatopackage uses it to determine
the width (number of character columns) of the text region that it managedbTHeahd “fb8 " frame-buffer support
packages also use it for a similar purpose.

Any standard package that uses the terminal emulator package shall, during the executiopexi Ttenethod (see
is-install), set thisvalue to the desired width of the text region (perhaps, but not necessarily, by executing
fbl-install or fb8-install).

See also to , fb8-install

comp (addrl addr2 len --n) F Ox7A
Compare two strings of lengtén.

Compare the string specified bgdrl andlento the string specified bgddr2 andlen. The strings are compared,

beginning at the given addresses, character by character up to thddangthuntil a difference is found. If the two

strings are identical, themnis zero. Otherwise is negative one if the first unmatching character in the string beginning at
addrlhas a lesser numeric value than the corresponding character in the string begiaddng athereas is one if the

first unmatching character in the string beginningdairl has a greater numeric value than the corresponding character in
the string beginning atddr2

128

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

“compatible S
Standardgroperty nameo define alternatefame” property values.
prop-encoded-array
The concatenation, wittncode+ , of an arbitrary number of text strings, each encodedemtode-string

Specifies a list of devices with which this device is compatible. This is used by a client program when it is trying to
determine the appropriate driver for this device, in case the client program has no driver matching the value of the
“name” property.

The text strings of which this property value is composed follow the same conventions and limitations as the value of the
“name” property.

A client program, when searching for an operating system driver for the device represented by a device node containing
this property, should do the following:

First look for a driver matching this device'sme” property.

If no match is found, look for a driver matching the first text string in doerfpatible " property. Failing that, try
the second text string, and so on.

Used as:

" XYZCO,dev-name" encode-string

" ABCCO,my-dev" encode-string encode+
" RST,dev21-typed4" encode-string encode+
" compatible" property

NOTE—The “compatibility” of a client program’s device driver with a specific piece of hardware is ultimately
determined by the manufacturers of the client program software and the hardwarend¢big@pen Firmware. When an
FCode program “registers” @dmpatible " property with Open Firmware, the manufacturer of that hardware is

sending a “hint” to client program software saying that this specific piece of hardware is either substantially similar to or
identical with the hardware device(s) named by tanipatible " property. This might be done to help the client

program software choose a device driver when it would not recognize the contentsnaintie® (Jroperty as a supported
device, but would recognize an alternatarhe” within the “compatible " property.

compile (-) C
Compile following command at run time.

Used within a colon definition. When the colon definition is later executed, append the execution semantics that
immediately follow those afompile within the definition that contaireompile to the current definition.

compile, (xt--) AF 0xDD
Compile the behavior of the word given Xty

[compile] ([old-name< >] --) AC
Compile the immediately following command.

constant (E:--x) AT
(x "new-name< >" --)
Create a named constanéw-nameeturns value.
Tokenizer equivalent: new-token [named-token |external-token b(constant)
ANS Forth/tokenizer difference: In FCode sourceonstant cannot appear inside a colon definition.

2constant (E: --x1x2) A
(x1 x2 "new-name< >" --)
Create a named two-number constant.

129

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

control ([text< >] -- char) T

Generate control-code for the immediately following character.

Generate control-codes by calculating the ASCII code for the following character and setting all but the lower five bits to
zero. For example, either obntrol B or control b will leave the value 0x02 on the stack.

Interpretation: ([text< >] -- char)

Skip leading space delimiters. Parsgtdelimited by a space. Put the integer value of the least significant 5 bits of the
first character ofexton the stack.

Compilation: ([text<>]--)

Skip leading space delimiters. Patsgtdelimited by a space. Append the run-time semantics given below to the current
definition.

Run-time: (-- char)

Placechar, the integer value of the least significant 5 bits of first charactexpbn the stack.
Used as: control Boo (0x02)

Tokenizer equivalent: b(lit) 00 00 00 xx-byte

count (pstr -- strlen) AF 0x84

Unpack a counted string to a text string.

cpeek (‘addr -- false | byte true) F 0x220

Attempt to fetch the byte addr.

Return the data artdue if the access was successfulfadse return indicates that a read access error occurred.

cpoke (byte addr -- okay?) F 0x223

Attempt to store the byte sxddr.

Returntrue if the access was successfulfadse return indicates that a write access error occurred.

cr (--) AF 0x92
Subsequent output goes to the next line.
Terminate a line on the display and move the cursor to the beginning of the next line. The actual control codes issued are
implementation-dependent.
(cr (--) F 0x91
Output the carriage-return charactercarret (0x0D).
NOTE—The most common use f¢er is for reporting the progress of a test that has many steps. By(osinigstead
of cr , the progress report appears on a single line instead of scrolling.
create (E: -- a-addr) AT
("new-name< >" --)
Create a new command; behavior set by further commands.
NOTE—Since FCode has no function that is equivalent to ANS Faitiés> , create cannot be used in conjunction
with does> in FCode source. However, it is still useful for arrays of initialized data, in which case it is typically followed
by sequences of functions like , w,, and, , taking care to ensure proper address alignment.
Tokenizer equivalent: new-token |named-token |external-token b(create)
ANS Forth/tokenizer difference: In FCode sourcereate cannot appear inside a colon definition.
$create (E: -- a-addr)

130

(name-str name-len --)
Call create , new name specified ame string

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Ctrace (--)

d#

Display saved call stack, showing subroutines calls and arguments.

Display the subroutine call stack that was in effect when the program state was saved (i.e., when the program was
suspended). The format of the display is implementation-dependent.

([number< >] --n) T
Interpret the following number as a decimal number (base ten).
Interpretation: ([number< >] --n)

Skip leading space delimiters. Pamsenberdelimited by a space. Convert the stimgnberto an integen using a
conversion radix of ten. Paton the stack. An ambiguous condition exists if the conversion fails.

Compilation: ([number< >] --)

Skip leading space delimiters. Pamsenberdelimited by a space. Convert the stimgnberto an integen using a
conversion radix of ten. Append the run-time semantics given below to the current definition. An ambiguous
condition exists if the conversion fails.

Run-time: (-n)
Placen on the stack.
The number is interpreted in decimal regardless of the current vabasén The value obase is unchanged.
Used as:d# 1001 (1001)
Tokenizer equivalent: b(lit) xx-byte xx-byte xx-byte xx-byte

d+ (d1d2--d.sum) AF 0xD8
Add d1to d2 giving double-numbed.sum
d- (d1d2 --d.diff) AF 0xD9
Subtractd2 from d1 giving double-numbed.diff.
d (n--) T
Display a signed number (and space) in decimal.
Ignore the value ibbase and leave it unchanged. Also display a single trailing space.
Tokenizer equivalent: base @ swap 10 base ! . base !
“deblocker ” S
Support package; handles byte I/O for block-oriented devices.
See: 3.8.3.
debug ("old-name< >" --)

Mark the commandld-namefor debugging.

Used as: ok debug old-name

Subsequent attempts to execute that command enter the Forth source-level debugger. A standard system that implements
this feature may allow several commands to be marked for debugging simultaneously, but only one is required.

During the execution of a debugged command, before the execution of each command called by the debugged command,
display the contents of the stack followed by the name of the command that is about to be executed.

Debugging occurs in either “step mode” or “trace mode”, controlled bstépping andtracing commands. “Step
mode” allows the user to control the progress of execution, whereas “trace mode” causes execution to continue
automatically (but with calling information displayed).

NOTE—Debug mode can be turned off with thebug-off command.
NOTE—The system does not necessarily operate at full speed when one or more commands are marked for debugging.

Debugging basic Forth commands (which could have been used in the implementdébngj is not recommended.
The system may ignore requests to debug words that are “unsafe” to debug.

131

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

(debug (xt--)
Mark the command indicated Byfor debugging.

See: debug for more information.

debug-off (--)
Turn off the Forth source-level debugger.

decimal (-) AT
Set numeric conversion radix to ten.
Tokenizer: If decimal is encountered in FCode source outside a definition, set the tokenizer's numeric conversion

radix to ten. Ifdecimal is encountered in FCode source inside a definition, append the following sequence to the FCode
program that is being created.

Tokenizer equivalent: 10 base !
ANS Forth/tokenizer difference: ANS Forth has no separate “tokenizing” behavior.

decode-bytes (prop-addrl prop-lenl data-len -- prop-addr2 prop-len2 data-addr data-len)T
Decode a byte array frompeop-encoded-array

Return the remainder of the arpasop-addr2 prop-lenzand the decoded byte armdgta-addr data-len
Tokenizer equivalent: >r over r@ + swap r@ - rot r>

decode-int (prop-addrl prop-lenl -- prop-addr2 prop-len2 n) F 0x21B
Decode a number from@op-encoded-array

Decode a quadlet number from the beginning of the gn@y-addrl prop-lenlreturn the remainder of the arrpsop-
addr2 prop-len2and the decoded number

decode-phys (prop-addrl prop-lenl -- prop-addr2 prop-len2 phys.lo ... phys.hi) F 0x128
Decode a unit address from a prop-encoded-array.
Theunit addresss a list of cells denoting a physical address, encoded as defiaeddde-phys . decode-phys

decodes that list from the beginning of grep-encoded arragenoted byrop-addrl prop-lenlreturning the remainder
of the arrayprop-addr2 prop-lenznd the list of address componepitys.lo... phys.hi

The number of cells in the liphys.lo... phys.hiis determined by the value of thaddress-cells property of the
parent node.

decode-string (prop-addrl prop-lenl -- prop-addr2 prop-len2 str len) F 0x21C
Decode a string from prop-encoded-array
Decode a (null-terminated) string from the beginning of the gmay-addrl prop-lenlreturn the remainder of the array

prop-addr2 prop-lenzand the decoded strisly len lenreflects the length of the decoded string not including the null
terminator.

decode-unit (‘addr len -- phys.lo ... phys.hi) M
Convert text unit-string to physical address.
Convertunit-string the text string representation,gbys.lo... phys.hj the numerical representation of a physical address

within the address space defined by this device node. The number of cells inghgdii... phys.hiis determined by
the value of thetaddress-cells property of this node.

decode-unit is a static method.
Used as:" 3,4000" decode-unit (ff004000 d4000003)

default-font (-- addr width height advance min-char #glyphs) F Ox16A
Return the font parameters for the default system font.

Used as: default-font (...) set-font
See also set-font

132

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

defer (E:...--?27?) T
("new-name< >" --)
Create a command with alterable behavior; alter teith
Skip leading space delimiters. Parssv-namelelimited by a space. Create a definitionriew-namewith the execution

semantics defined below, initially associating with it a definition that displays a message indicating execution of an
unitializeddefer word.

The definition associated wittew-name can be changed later by placing the execution token of the new definition on
the stack and executing the phr&s@ew-name

new-names referred to as defer word.

Used as: ok defer new-name (create new command)
Execution: (ohew-namg (...--?2?27?)
Execute the definition currently associated widw-name

Later used as:

[1old-name to new-name (load with old command)
new-name (execute new command, behavior is old command)

In FCode sourcejefer cannot appear inside a colon definition.
Tokenizer equivalent: new-token |named-token |external-token b(defer)

delete-characters (n--) F Ox15E
defer , deleten characters to the right of the cursor.
delete-characters is one of thelefer words of the display device interface. The terminal emulator package

executeslelete-characters when it has processed a character sequence that requires the deletion of characters to
the right of the cursor.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Move the remainder of the line to the left to fill the deleted positions and eraseighémost columns in the line
without moving the cursor.

See also:to , fb8-install

delete-lines (n--) F 0x160
defer , deleten lines at and below the cursor line.
delete-lines is one of thelefer words of the display device interface. The terminal emulator package executes
delete-lines when it has processed a character sequence that requires the deletion of lines of text below the line

containing the cursor.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Move the following lines up to fill the deleted portions and erase times at the bottom without moving the cursor.
See also:to , fb8-install

delete-property (name-str name-len --) F Ox21E
Delete the named property in taetive package

If the named property does not exist in #utive packagetake no action.

depth (--u) AF 0x51
Return count of items on the stack.

dev ("device-specifier<eol>" --)
Make the specified device node thetive package

Parsedevice-specifiedelimited by end of line. Perform the equivalenfinél-device with device-specifiens its
argument.

Used as: ok dev device-specifier <eol>

133

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

devalias ("{alias-name}< >{device-path}<eol>" --)

Create device alias or display current alias(es).

If alias-nameanddevice-pathare specified, create a device alias naaled-namerepresentinglevice-path
If an alias with the same name already exists, the new value supersedes the old.
Used as: ok devalias alias-name /full/pathname

If only alias-nameis specified, display the device-path correspondiraits-name(if this alias exists). If nothing is
specified aftedevalias , display all current existing device aliases.

device-end (--)

Unselect thective packagdeaving none selected.

device-name (strlen--) F 0x201

Create the lame” property, value is indicated string.

Shorthand command to create a property irative packagevhoseproperty names “name”.
Equivalent to: encode-string " name" property
Used as:" XYZCO,my-dev-name" device-name

device-type (strlen--) F O0x11A

Create tevice_type " property, value is indicated string.

Shorthand command to create a property irattieve packagevhoseproperty names “device_type .
Equivalent to: encode-string " device_type" property

Used as:" block" device-type

See: “device_type " glossary entry for more information.

NOTE—There is a spelling difference between the name of the propdgyi¢e_type ") and the name of the
command that can be called to createdegice-type 7).

“device_type ” S

Standardgroperty nameo specify the implemented interface.
prop-encoded-array
Text string encoded witencode-string

Specifies the “device type” of this package, thus implying a specific set of package class methods implemented by this
package.

See:3.4.5 for more information and for a list of supported string values for this property and their meanings.

NOTE—This property can be created wjgtoperty or withdevice-type . Note the spelling difference between the
property name (evice_type ") and the command nameévice-type ”. This is an historical accident. The
property name should have beelevVice-type " for consistency with the naming conventions generally used herein,
but changing the property name would have resulted in compatibility problems for little payback.

This standard defines the followinigvice types“block ” “byte ” “display " “network " *“serial ".

Used as:" network" encode-string " device_type" property

diag-device (-- dev-str dev-len) N

Defaultdevice-naméor boot , if diagnostic-mode? istrue .

dev-stringis adevice-specifieor a list ofdevice-specifiersas described iload .
Configuration variable typestring[32]. Suggested default valuaet .

diag-file (-- arg-str arg-len) N

134

Defaultargumentdor boot , if diagnostic-mode? istrue .

Configuration variable typestring[32]. Suggested default valueliag .

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

diagnostic-mode? (-- diag?) F 0x120
If true , boot from diag sources and perform longer self-tests.

diagnostic-mode? controls several aspects of machine function, described next.

During bootingdiagnostic-mode? controls the choice of boot device and boot file, if not specified ibdbée
command. Iidiagnostic-mode? istrue , the default boot device is specifieddigg-device and the default
boot file is specified bgiag-file . If diagnostic-mode? isfalse , the default boot device is specified by
boot-device and the default boot file is specified byot-file

During machine power-omwljagnostic-mode? controls the extent of system self-test and controls the amount of
informative messages displayeddifdgnostic-mode? istrue , more extensive tests are performed and more
messages are displayed. The details of self-test, however, are implementation-dependent.

FCode programs can ud@gnostic-mode? to control the extent of the self-tests performed. While the specifics of
use are controlled by the FCode program itself, the recommended use is described in the preceding paragraph. In other
words, ifdiagnostic-mode? istrue , more extensive tests are performed and more messages are displayed.

diagnostic-mode? will returntrue if any of the following conditions are met:

— diag-switch? istrue
— machine diagnostic switch (system-dependent) is ON
— other system-dependent indicators request extensive diagnostics

diag-switch? (-- diag?) N
If true , diagnostic-mode? returnstrue .

NOTE—diag-switch? true impliesdiagnostic-mode? true , butdiag-switch? false does not
necessarily implygliagnostic-mode? false . Other system-dependent mechanisms can cause
diagnostic-mode? to betrue .

Configuration variable typeBoolean Suggested default valuéalse

digit (char base -- digit true | char false) F O0xA3
Convert a character to a digit in the givmse

If the character is invalid, leave the character on the stack. The flag indicates the success or failure of the operation.

dis (addr --)
Begin disassembling at the given address.

The format of the disassembly, and the conditions for stopping disassembly, are ISA-dependent.
See also:7.6.6.

+dis (--)
Continue disassembling whettes or +dis last stopped.

See: dis for more information.

“disk-label K S
Support package, interprets disk partitioning information.

See: 3.8.1 for more information.

135

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

“display ” S
Graphic output display device type.
Standard string value oflevice_type " property for user output devices with randomly addressable pixels.
“display " devices can be used for console output.
A standard package with thidévice_type " property value shall implement the following methods.
open, close ,write , draw-logo

A standard package with thidévice_type " property value should implement the following method if an unexpected
system reset can cause the display to become invisible (e.g., the video is turned off) and the display can be restored to
visibility without performing memory mapping or memory allocation operations:

restore
Additional Requirements for therite method:

Display the sequence t&n characters beginning atldr, interpreting escape sequences as described farthaal
emulatorsection.

A standard package with thidévice_type " property value may implement additional device-specific methods.
See: 3.8.4;character-set

NOTE—Such packages typically use tieeminal emulatosupport package to process ANSI X3.64 escape sequences for
thewrite method. “Dumb” frame-buffer devices typically use either tliel' ” or the “fb8 ” support package to
implement the “Character Maplefer words interface. More complicated display devices, such as those with hardware
acceleration, typically implement that interface directly.

display-status (n--) F,O 0x121
Show the result of a device self-test.

nis a device-dependent number indicating the status of the device or the progress of the self-test.

The method of showing the result is system-dependent, but is intended to use some device that is likely to be available at
an early phase of system start-up, even if much of the system is not operational. For example, diagnostic LEDs are often
used.

dl (--)
Download and execute Forth text; end wih
Receive text from the current input source and store it in a buffer until an EOT (0x04, or control-D) character is received.

Do not store the EOT character. Evaluate the contents of the buffer as vattaktheommand. The buffer size shall be at
least 4096 characters.

NOTE—This is typically used with a serial line as the current input source. After issuidf t@mmand, the user
typically issues commands to another computer to cause the desired Forth text (such as a text file) to be sent over the
serial line, followed by the EOT (0x04, or control-D) character.

dma-alloc (...size --virt) M
Allocate a memory region for later use.
Allocatesizebytes of memory, contiguous within the direct-memory-access address space of the device bus, suitable for
direct memory access by a “bus master” device. Return the virtual adaite$iat virtual address is suitable for CPU

access to the allocated region, but, in gendrah-map-in must be used to convert it to an address suitable for direct
memory access by the bus-master device.

Allocate the memory according to the most stringent alignment requirements for the bus.
Some hierarchical devices may require additional mapping space parameters.
See also:dma-map-in , dma-free

If the requested operation cannot be performeidraw shall be called with an appropriate error message, as with
abort"

NOTE—Out-of-memory conditions may be detected and handled properly in the cod# @ntla-alloc catch

dma-free (virt size --) M
Free memory allocated withma-alloc

Freesizebytes of memory at virtual addresst, previously allocated by trdma-alloc method.

136

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

dma-map-in (... virt size cacheable? -- devaddr) M

Convert virtual address to device bus DMA address.

Convert the virtual address ranget size previously allocated by trdma-alloc method, into an address suitable for
DMA on the device bus. Return this addrdssaddr

dma-map-in can also be used to map application-supplied data buffers for DMA use, if possible on the bus.

If the flagcacheable?is nonzero, the caller wishes to make use of caches for the DMA buffer if they are available.

Immediately aftedma-map-in has been executed, the contents of the address range as seen by the processor (the
processor’s “view”") is the same as the contents as seen by the device that performs the DMA (the device’s “view”). After

the DMA device has performed DMA or the processor has performed a write to the range in question, the contents of the
address range as seen by the processor (the processor’s “view”) is not necessarily the same as the contents as seen by the
device that performs the DMA (the device’s “view”). The two views can be made consistent by exgmatingap-out

ordma-sync .

Some hierarchical devices may require additional mapping space parameters.

If the requested operation cannot be performeldraw shall be called with an appropriate error message, as with
abort"

NOTE—Out-of-memory conditions may be detected and handled properly in the cod# entla-map-in catch

dma-map-out (virt devaddr size --) M

Free DMA mapping set up wittma-map-in .

Free the DMA mapping specified birt devaddr sizgpreviously created with thdma-map-in method.
This will also have the effect of flushing all caches (witha-sync) associated with that mapping.

dma-sync (virt devaddr size --) M

do

?do

Synchronize (flush) DMA memory caches.

Flush any memory caches associated with the DMA mappihdevaddr size

(C: -- dodest-sys) AT
(limit start --) (R: -- sys)
Start a counted loop; beginning index valustét
Interpretation: (C: -- dodest-sy s)

Enter compilation state, initiating a temporary current definition in a region of memory other than the data space. Then
perform the compilation semantics of ANS Fd@

Compilation: (C: -- dodest-sys)
Same as ANS Forth.
Run-time: (limit start --) (R: -- sys)

Same as ANS Forth.
Tokenizer equivalent: b(do) +offset
ANS Forth note: Also works outside of a definition.

(C: -- dodest-sys) AT
(limit start --) (R: -- sys)
Similar todo, but do not execute looplifmit = start
Interpretation: (C: -- dodest-sys)

Enter compilation state, initiating a temporary current definition in a region of memory other than the data space. Then
perform the compilation semantics of ANS ForbQ

Compilation: (C: -- dodest-sys)
Same as ANS Forth.
Run-time: (limit start --) (R: -- sys)

Same as ANS Forth.
Tokenizer equivalent: b(?do) +offset
ANS Forth note: Also works outside of a definition.

137

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
does> (C: colon-sys1 -- colon-sys2) A
(--) (R:sysl--)
(...--...a-addr) (R:--sys2)
(E:...--722?)
Set run-time behavior of@eate ... does> construct.
draw-character (char--) F 0x157

defer ; draw a character at the current cursor position.

draw-character is one of thelefer words of the display device interface. The terminal emulator package executes
draw-character when it has processed a character sequence that calls for the display of a printable character
(subsequently, the terminal package advances the cursor to the next character position).

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Draw char on the display device at the cursor position. Other character positions on the line are unaffected.
See also:to , fb8-install

draw-logo (FCode function) (line# addr width height --) F 0x161
defer ; draw (atline#) the logo stored at locatiaddr.
draw-logo is one of thalefer words of the display device interfaég-install creates adraw-logo " method

whose behavior is to execute th@aw-logo defer word.banner executes thedraw-logo " method of the
console output device, if that device has such a method.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Draw a logo whose upper-left corner coincides with the upper-left corner of the character position at the beginning of
text lineline#. The logo can be either a device specific logo or the one-bit-per-pixel logo bit-map image specified by
addr, width, andheight. The format of that bit-map is as follows:

addris the starting address of the bit-meyidth andheightare its dimensions in pixels. Each bit of the bit-map
corresponds to one pixel. The most significant bit of the first byte controls the upper-left-corner pixel. The next bit
controls the next pixel to the right and so on. A zero bit represents the background color, and a one bit represents the
foreground color.

See also:to , fb8-install

draw-logo (package method) (line# addr width height --) M
Draw a logo on an output device.

The arguments and semantics of this method are identical to thosedcdthbbgo FCode function.

NOTE—is-install automatically creates an implementation of this method that executirathdéogo defer
word.

See also:“display ”, banner , draw-logo (FCode function)

driver (addrlen --) F,O 0x118

Creates therfame” property.

Removes the manufacturer name prefix from the suaddy len then creates thendme” property from the remainder of
the string. Previous versions of SBus firmware have implemented the process of removing the manufacturer name prefix
in inconsistent ways, thus there is no single definitiodrivier that will ensure backwards compatibility in all cases.

NOTE—SBus [B2] developers were advised to avoid the use of this FCode function when the inconsistency was
discovered, and the committee believes that its use has largely been eliminated.

drop (x-) AF 0x46
Remove top item from the stack.

2drop (x1x2--) AF 0x52
Remove top two items from the stack.

138

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

3drop (x1x2x3--) T

Remove top three items from the stack.

Tokenizer equivalent: drop 2drop

dump (addrlen --) A

Displaylen bytes of memory starting atidr.

(X--xx) AF 0x47
Duplicate the top item on the stack.
2dup (x1x2--x1x2x1x2) AF 0x53
Duplicate the top two items on the stack.
3dup (x1 x2 x3 -- x1 x2 x3 x1 x2 x3) T
Duplicate three stack items.
Tokenizer equivalent: 2 pick 2 pick 2 pick
?dup (x--0]xx) AF 0x50
Duplicate top stack item if it is nonzero.
else (C: orig-sys1 -- orig-sys2) AT
(--)
Whenif flag wasfalse , execute following code.
Tokenizer equivalent: bbranch +offset b(>resolve)
ANS Forth note: Also works outside of a definition.
emit (char --) AF Ox8F
Display the given character.
encode+ (prop-addrl prop-lenl prop-addr2 prop-len2 -- prop-addr3 prop-len3) F 0x112

Concatenate twprop-encoded-arrayinto a single array.
Theproperty encodin@f the result is the first array immediately followed by the second array. Conseqpesyiien3is
equal toprop-lenlplusprop-len2

Usage restriction: The first arrayprop-addrl prop-lenInust have been created just before the second nopyaddr2
prop-len2 with no intervening dictionary allocation or othprop-encoded-array having been created.

In a typical implementatiorprop-addr3is the same gsrop-addrl
Used as:

" some-text" encode-string (prop-addrl lenl)
5000 encode-int (prop-addrl lenl prop-addr2 len2)
encode+ (prop-addr lenl+2)

encode-bytes (data-addr data-len -- prop-addr prop-len’) F 0x115

Encode a byte array intopgop-encoded-array

Theproperty encodin@f a byte array is the sequence of bytes itself, with no additional bytes.
Contrast teencode-string , which appends a null byte to the end.

NOTE—In order to decode the encoded byte array, some additional method must be provided to know the length of the
array. This could be by previous agreement or by encoding the length value first.

Used as: (data-addr data-len) encode-bytes (prop-addr prop-len)

139

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

encode-int ('n -- prop-addr prop-len) F 0x111
Encode a humber intopop-encoded-array
Theproperty encodin@f a (quadlet) number is a sequence of 4 bytes, with the most significant byte first (i.e., at the
smallest address).
No alignment is implied; the sequence of 4 bytes begins at the first available location.
Used as: 5000 encode-int (prop-addr prop-len’)

encode-phys (phys.lo ... phys.hi -- prop-addr prop-len) F 0x113
Encode ainit addressnto aprop-encoded-array
The property encodingf theunit addresga list of cellsdenoting a physical address)tie property encodingas with

encode-int) of phys.hicomponent, followed by the encoding of the component that appears on the staghysldww
and so on, ending with the encoding of fiing's.locomponent.

The number of cells in thiést phys.lo... phys.hiis determined by the value of thaddress-cells property of the
parent node.

Used as: (phys.lo ... phys.hi) encode-phys (prop-addr prop-len)

encode-string ('str len -- prop-addr prop-len) F 0x114
Encode a string into grop-encoded-array
The property encoding of a string is the bytes of the string, followed by a null (binary 0) byte. The length identified by
prop-lenincludes the null byte; thysop-lenis one more thaten.
Contrast teencode-bytes , which does not append a null byte.
Used as:" some-text" encode-string (prop-addr prop-len)

encode-unit (phys.lo ... phys.hi -- unit-str unit-len) M
Convert physical address to textit-string
Convertphys.lo... phys-high the numerical representation,unit-string the text string representation of a physical

address within the address space defined by this device node. The number of cells iphy llist. phys.hiis
determined by the value of tladdress-cells property of this node.

encode-unit s a static method.

end0 (user interface) ()
Cease interpreting this program.

Interpretation: (--)
Perform the execution semantics given below.
Compilation: (-)
Perform the execution semantics given below.
Execution: (--)

Cause the command interpreter to ignore the remainder of the input buffer and all subsequent lines from the same input
source.

NOTE—The optional user interface semantics of this command duplicate the purpose, but not the detailed behavior, of
the FCode semantics. The detailed behavior differs because the user interface command interpreter processes text, while
the FCode evaluator processes byte-encoded FCode programs.

140

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
end0 (FCode function) (--) F 0x00
Cease interpreting this program.
FCode evaluation: (F:--)

Set the internal state varialftmde-endo true, which will cause the FCode evaluator to cease evaluating the current
FCode program immediately after this function is interpreted.

FCode Execution: (-)

Set the internal state varialftsode-endo true, which will cause the FCode evaluator to cease evaluating the current
FCode program after the FCode function whose evaluation resulted in the execution of this function finishes.

NOTE—Normally,end0 appears at the end of an FCode program. However, it can be used within the body of an FCode
program, for example, to terminate FCode evaluation based upon a conditional test. To do so, it is hecessary to postpone
the execution oéndO to prevent the FCode evaluator from exiting as so@md® is encountered. That can be

accomplished with the phrafpendO execute , usually within arif ... then construct.

endl (--) F OxFF
Cease interpreting this program.

Same agnd0.

NOTE—end1 is not intended to appear in source code. It is defined as a guard against mis-programmed ROMs.
Unprogrammed regions of ROM usually appear as all ones or all zeroes. Havidg@dthndOxff defined as end
codes stops the FCode interpreter if it enters an unprogrammed region of a ROM.

endcase (C: case-sys --) AT
(sel | <nothing> --)
Mark end of ecase statement.
Compilation: (C: case-sys --)
Perform the compilation semantics of ANS FABNDCASEThen, if the current definition is temporary and the depth of

the control flow stack is the same as its depth when the temporary current definition was initiated, perform the
compilation semantics of and execute the temporary current definition.

Run-time: (sel | <nothing> --)
Same as ANS Forth.

Tokenizer equivalent: b(endcase)

ANS Forth note: Also works outside of a definition.

end-code (code-sys --)
End creation of machine-code sequence.

No additional assembly language code is assembled.
code-syss balanced by the correspondirape orlabel

endof (C: case-sysl of-sys -- case-sys2) AT
(--)
Mark end of clause; jump to endadse if match.
Tokenizer equivalent: b(endof) +offset
ANS Forth note: Also works outside of a definition.

end-package (--)
Close the device tree entry set up viidgin-package

Perform the following:

Callfinish-device to close the child device node.
Set the working vocabulary to Forth.
Call close-dev

environment? ('str len -- false | value true) A
Return system information based on input keyword.

The exact set of recognized keyword strings is implementation-dependent.

141

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

erase (addrlen --) AT
Setlen bytes beginning addrto zero.

Tokenizer equivalent: O fill

erase-screen (--) F 0x15A
defer , clear the screen.
erase-screen is one of thalefer words of the display device interface. The terminal emulator package executes

erase-screen when the console device is first activated, and also when it has processed a character sequence that calls
for the screen to be cleared.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Clear the entire screen (not just th&t window) setting it to the background color.
See also:to , fb8-install

eval (...strlen--?27?) T
Synonym forevaluate

Tokenizer equivalent: evaluate

evaluate (...strlen--?2??) AF 0xCD
Interpret Forth text from the given string.

even (n--n|n+l)
Round to nearest even integenm._

execute (...xt--2?27?) AF 0x1D
Execute the command whose execution tokem is

execute-device-method (... dev-str dev-len method-str method-len -- ... false | ??7? true)
Execute the named method in the package nateedtring
dev-stringis adevice-specifierReturndalse if the method could not be executed (i.e.,dbeice-specifiers invalid,

or that device has no method with the given name, or execution of that method resulteldart amr throw).
Otherwise, returnsue above whatever results were placed on the stack by the execution of the method

The process is as defined in 4.3, using the rules givesxémute-device-method
See also:apply

“existing " S
MMU packageproperty nameo defineexistingvirtual address resources.

prop-encoded-array:

Arbitrary number of/irtual-addresslen pairs.Virtual-addresamay be one or more integers, each encoded as with
encode-int . Lenmay be one or more integers encoded as evitode-int

The value of this property defines the regions of virtual address space managed by the MMU in whose package this
property is defined, without regard to whether or not these regions are currently in use. The encodihgd-afdress
andlen are MMU-specific.

See also:“available ”, map, modify , “reg ", translate , unmap

exit (--) (R:sys--) AF 0x33
Exit from the currently executing command.

142

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

exit? (--done?)
Returntrue when output should be terminated.

Handle output pagination and user control thereof. Réttuen if the user has requested the cessation of output from the
current command.

exit? is used inside loops that might send many lines of output to the console. It is typically called once for each line of
output.

The precise behavior is implementation-dependent; a suggested behavior follows:

If the value contained in thdline variable is greater than a predetermined value (typically returned by a word named
lines/page) prompt the user with the message:

More [<space>,<cr>,q] ?

and wait for a character to be typed on the console. If that charaatér istirntrue . If that character is<cr> "
(carriage return), arrange for the next cakxit? to prompt the user, and retuaise . If the character is neitheg”
nor “<cr> “, set the contents dfline to zero and returfalse

If a “q” character has been typed on the console input device since the last timétthatwas called returtrue .
If any other character has been typed, prompt for what to do next, as shown above, afalseturn

The typical behavior described above has the following features (assuming that output-generating comraaitds call
once per line of output):

— Output pauses at the end of each page of output, allowing the user to either stop furtherggitjoiet @Gne more
line output before pausing agaix€r> "), or continue with the next page of outputgpace>).

— The user can stop further output at any time by typgig “
— The user can cause a pause before the end of a page by typing a character oftiper than “

expect (addrlen --) AF Ox8A
Get and display input keyboard line, storing iadtlr.

external (-) T
Newly created functions will be visible.
Arrange for subsequently created definitions to have permanent names that persistadtesetipackagés finished, so

that those definitions will be visible package methods. In implementations that lack the ability to make temporary names,
this may be a no-operation.

The mode established lexternal persists until changed lheaders orheaderless

Tokenizer: Arrange for subsequently created FCode functions texisenal-token , So that those functions will be
visible package methods.

external-token (--) F OxCA
(F: /FCode-string FCode#/ --)

Create a new named FCode function.

FCode evaluation: (F: /FCode-string FCode#/ --)

Read arFCode-string then arFCode# from the current FCode program. Create a new FCode function, associating with
it the FCode numbdfCode# The new function’s execution semantics are initially undefined; they will be determined
later by the execution of eithb(:) , b(create) , b(defer) ,b(constant) , b(buffer:) , b(field) ,

b(variable) , orb(value)

Associate the new function with the name giverFBpde-string, thus making it a method of the current node. The new
method can later be executed with, for exantpta)l-method

FCODE ONLY (Tokenized by defining words external mode)

false (--false) AT
Return the valuéalse (zero).

Tokenizer equivalent 0

143

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

fb8-blink-screen (--) F 0x184
Implement the fb8 " blink-screen function.

Typically implemented as: fb8-invert-screen fb8-invert-screen

NOTE—Typical generic implementations of this function are likely to be quite slow, since they probably will access each
pixel on the screen four times. For most devices, there is a device-specific implementatioblfoktbereen
function that is much faster, for example, disabling video output for about 20 ms. It is recommended that such device-

specific implementations be used instead of the gefiEdiblink-screen function.

fb8-delete-characters (n--) F 0x187
Implement the fb8 ” delete-characters function.

fb8-delete-lines (n--) F 0x189
Implement the fb8 " delete-lines function.

fb8-draw-character (char--) F 0x180

Implement the fb8 ” draw-character function.

fb8-draw-logo (line# addr width height --) F 0x18A
Implement the fb8 ” draw-logo function.

The logo is painted with a pixel value of 0x01.

fb8-erase-screen (--) F 0x183
Implement the fb8 " erase-screen function.

fb8-insert-characters (n--) F 0x186
Implement the fb8 " insert-characters function.

fb8-insert-lines (n--) F 0x188
Implement the fb8 ” insert-lines function.

fb8-install ('width height #columns #lines --) F 0x18B

Install all built-in generic 8-bit frame-buffer routines.
Install the Th8 " generic 8-bit frame-buffer routines into the display device interfi@fer words, configuring the
“fb8 ” routines for a frame-buffamneightpixels high, with successive scan livggth pixels apart.

#columnsand#linesindicate the maximum number of text columns and lines that the device is capable of supporting
(#columnsand#linesusually depend upon the width and height of the font to be used, among other things).

width is the difference between the starting memory addresses of two consecutive scan lines in the frame-buffer. For
frame-buffers where all memory locations correspond to displayable pixels, this is the same as the width of the screen in
pixels.

heightis the height of the display in scan lines.

Setscreen-width to thewidth argumentscreen-height to theheightargument#columns to the minimum of
#columnsandscreen-#columns |, and#lines to the minimum o#linesandscreen-#rows

Setwindow-top andwindow-left to center the text region on the screen (the calculation typically involves

#columns , #lines , char-width | char-height , screen-width , andscreen-height). The calculation

assumes thatidth pixels per scan line are displayable. If some are not (for example, some number of pixels at the right of
the display), it is the responsibility of the display driver to adjvistiow-left to locate the text region in an

appropriate place aftén8-install returns.

Usage restriction: char-width ~ andchar-height must be set beforf@8-install is executed; otherwise, the
centering is likely to be incorrect.

See also:set-font

fb8-invert-screen (--) F 0x185
Implement the fb8 ” invert-screen function.

144

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

fb8-reset-screen (--) F 0x181
Implement the fb8 ” reset-screen function.

This routine is usually implemented as a no-op.

fb8-toggle-cursor (--) F 0x182
Implement the fb8 ” toggle-cursor function.

fcode-debug? (-- names?) N
If true , save names for FCodes witeaders .
This flag is used during the evaluation of an FCode program. If this flageis, preserve the names of local FCodes
created witmamed-token in the Forth dictionary. If this flag felse , discard those names fields.
Configuration variable typ@oolean Suggested default valuise

fcode-revision (--n) F 0x87
Return revision level of device interface.

”

The human-readable representation of the revision level is a string of the form “major.minor”, where “major” and “minor
are decimal numbers. THeode-revision returns a single number representation whose value is given by the
formula (major*65536 + minor). For example, if the release number were 2.12, the return value would be 0x0002.000C.

The revision level of the device interface described by this standard is “3.0", thécefdeerevision shall return
0x0003.0000.

ferror (--) F OxFC
Standard FCode number for undefined FCode functions.
Set the internal state varialftmde-endo true, which will cause the FCode evaluator to cease interpreting the current
FCode program after the FCode function whose evaluation resulted in the execution of this function finishes. Additional

semantics are implementation-dependent (typically, such additional semantics include displaying an error messages
indicating that an undefined FCode number has been executed).

In addition to this function’s assigned FCode number, undefined FCode numbers (those that are not explicity assigned to
other functions) are associated wignror

NOTE—ferror 's assigned FCode number provides a way to detect at run-time whether or not a particular FCode
number is defined. This can be accomplished by comparing the execution token of the function in question with
ferror ’s execution token, e.g.,

77 get-token drop (xt)
[1ferror = (‘undefined?)

See:b()

field (E: addr -- addr+offset) T
(offset size "new-name< >" -- offset+size)
Create new field offset specifier, nameglv-name
Skip leading delimiters. Parsew-namedelimited by a space. Create a definitionrfew-namewith the execution
semantics defined below.
Execution: (of new-namg (E: addr -- addr+offset)
Return the sum adddr andoffset

field is used to create a named offset into a data structure. When a definition crdattl byis executed, itaddr
argument is typically the base address of the data structure.

In FCode sourcdield cannot be called from within a colon definition.
Example: The sequence:
(24) 10 field >name (34)
creates a command calledame with the same behavior as the following:
:>name 24 + ;

145

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Used as:

Assume a data structure 18 bytes long, organized as:
size - bytes 0-1
flag - bytes 2
name - bytes 3-17
first - bytes 3-9
last - bytes 10-17

ok struct (0)
ok 2 field >size (2)
ok 1 field >flag (3)
ok O field >name (3)
ok 7 field >first (10)
ok 8 field >last (18)
ok constant record-size

Later used as:

ok record-size buffer: my-record
ok my-record >name (hame-addr)
ok my-record >flag (flag-addr)

Tokenizer equivalent: new-token |named-token |external-token b(field)

fill (‘addr len byte --) AF 0x79
Setlen bytes beginning addr to the valueyte

find (pstr--xtn|pstr0) A
Find command, return -1 (found), +1 (immediate), or O (not found).

$find (name-str name-len -- xt true | name-str name-len false) F OxCB
Find the command name@dme stringn the dictionary.

If found, returntrue andxt. Otherwise, returfalse and leavename stringon the stack.
Used as:

" old-name" $find (xttrue)
if execute else (do-error) then

Searches the current search order. During normal FCode evaluation, the search order consists of the vocabulary containing
the visible methods of the current device node, followed by the Forth vocabulary.

find-device (dev-str dev-len --)
Make the device nod#ev-stringtheactive package
If dev-stringis the string . ", set theactive packageo the parent of the currenthgctive packageOtherwise, set the
active packageas described b4.3 in find-device context, usinglev-stringas thedevice-specifier
If the specified device is not found, execabort .

NOTE—find-device is similar todev, except that its argument is a string on the stack instead of text parsed from
the input buffer, allowindind-device to be used within a definition, with a literal string argument that is compiled
into the definition.

Used as:" device-alias" find-device

find-method (method-str method-len phandle -- false | xt true) F 0x207
Find the method namedethod-stringn the packagehandle
Returnfalse if the package has no such methodst@ndtrue if the operation succeeds. Subsequentlgan be used
with call-package

find-package (name-str name-len -- false | phandle true) F 0x204
Locate the support package namedhbgne string

If the package can be located, returrphigndleandtrue ; otherwise, returfalse

Interpret the name iname stringelative to the packages ” device node. If there are multiple packages with the same
name (within the packages ” node), return th@handlefor the most recently created one.

146

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

finish-device (--) F 0x127
Finish this package, sattive packag¢o parent.

Complete a device node that was createddw-device , as follows: If the device node has no “name” property, remove
the device node from the device tree. Otherwise, save the current valueswfénginstance’snitialized data items

within theactive packagéor later use in initializing the data items of instances created from that node. In any case,
destroy thecurrent instancemake its parent instance thgrent instanceand select the parent node of the device node
just completed, making the parent nodedbtve packageagain.

fm/mod (dn--remquot) A
Divide d by n.
>font (char -- addr) F Ox16E

Return beginning address fonar in the current font.

set-font must have been previously called for this command to be valid.
For any characters not in the font table, return a font entry for a valid, unspecified standard-width character.

fontbytes (-- bytes) F Ox16F
value , return interval between entries in the font table.

fontbytes is avalue thatis used by thely1 ” and “fb8 " frame-buffer support packages. It denotes the distance in
bytes between the successive scan lines of a glyph in the current font.

Any standard package that uses one of the frame-buffer support packages shallaetethigrior to executing either
fbl-install or fb8-install . That is typically done by executisgt-font

forget ("old-name< >" --) A
Remove commandid-nameand all subsequent definitions.

Leave the dictionary pointer at the value which it had just before the conolthndmewas defined. If there are multiple
commands in the dictionary with the nanid-name remove the most recent definition.

forth (--) A
Make Forth the context vocabulary.

frame-buffer-adr (--addr) F 0x162
value , return current frame-buffer virtual address.

Must be set usintp , when the frame-buffer package is opened.

free-mem (a-addrlen --) F 0x8C
Free memory allocated afloc-mem

The valuesa-addrandlen must be the same as used in a prevadlog-mem command.

free-virtual (virt size --) F 0x105
Destroy mapping andatidress ” property.

If the package associated with #harent instancénas an address ” property whose first value encodes the same
address asirt, delete that property. In any case, then execute the parent instaapetait method withvirt sizeas its
arguments.

fregisters (--)
Display floating-point registers (if present).

A standard system may either access the registers “in-place” or access copies of their values saved asaeetof the
program stateThe exact set of registers displayed, and the format, is ISA-dependent.

147

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

get-inherited-property (name-str name-len -- true | prop-addr prop-len false) F 0x21D
Return value for given property in the current instance or its parents.
Locate, within the package associated with the current instance or any of its parents, the propepsoptidgerame

matches the valugame stringIf the property exists, return the associated value gsrtipeencoded-arraprop-addr
prop-lenandfalse . Otherwise, returtrue .

get-msecs (--n) F 0x125
Return elapsed time, in milliseconds.
Return a free-running clock value, unreferenced to any specific time value. It is not assumed to maintain correctness
during power-down of the system.

Return the value to the best available accuracy and precision. There is no minimum specification for either accuracy or
precision.

get-my-property (name-str name-len -- true | prop-addr prop-len false) F Ox21A
Return value for given property in this package.
Locate, within the package associated withdleent instancethe property whosproperty namenatches the value

name stringIf the property exists, return the associated value gxrtipeencoded-arraprop-addr prop-lerandfalse
Otherwise, returtrue .

get-package-property (name-str name-len phandle -- true | prop-addr prop-len false) F 0x21F
Return value foname stringoroperty in packagphandle

Locate, within the packagghandle the property whosproperty namanmatches the valugame stringlIf the property
exists, return the associated value agtiop-encoded-arraprop-addr prop-lerandfalse . Otherwise, returtrue .

get-token (fcode# -- xt immediate?) F OxDA
Convert FCode number to function execution token.
Return the execution toke of the word associated with FCode numftede# and a flagmmediatehat istrue if

and only if that word will be executed (rather than compiled) when the FCode evaluator encounters its FCode number
while in compilation state.

go (-)

Execute or resume execution of a program in memory.

Restore the processor state fromgheed-program-stateemory area and begin/resume execution of the machine-code
program.

Resume execution at the address saved isahed-program-statgrogram counter register. This will normally contain

the initial value for a newly loaded program or the resumption address for a suspended program. However, the saved
program counter register can be altered by the user, causing the program to resunge (&esecuted) from an

arbitrary address.

This command has no effect unlesate-valid containdrue .
go can be used in conjunction with other commands in one of several ways:
After load (which also initializes theaved-program-stajego executes the program just downloaded.

After a program is suspended by entering the implementation-dependent “abort-sequence” (which saves the processor
state insaved-program-stajego resumes execution of the suspended program.

When testing a program with breakpoints, and after a breakpoint has been encountered (which saves the processor state in
saved-program-stajego resumes execution of the program being tested.

gos (n--)
Executego ntimes.

148

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
h# ([number<>] --n) T

Interpret the following number as a hexadecimal number (base sixteen).

Interpretation: ([number<>] --n)

Skip leading space delimiters. Pamsenberdelimited by a space. Convert the stimgnberto an integen using a
conversion radix of sixteen. Pobn the stack. An ambiguous condition exists if the conversion fails.

Compilation: ([number< >] --)

Skip leading space delimiters. Pamsenberdelimited by a space. Convert the stimgnberto an integen using a
conversion radix of sixteen. Append the run-time semantics given below to the current definition. An ambiguous condition
exists if the conversion fails.

Run-time: (-n)

Placen on the stack.

The number is interpreted in hexadecimal regardless of the current valagein The value obase is unchanged.
Used as: h# 1001 (decimal 4097)

Tokenizer equivalent: b(lit) xx-byte xx-byte xx-byte xx-byte

.h (n--) T
Display a signed number (and space) in hex.
Ignore the value ibbase and leave it unchanged. Also display a single trailing space.
Tokenizer equivalent: base @ swap 16 base ! . base !
headerless (--) T
Newly created functions will be invisible.
Arrange for subsequently created definitions to have temporary names that disappear attarethackagés finished,
so those definitions will be invisible thereafter. In implementations that lack the ability to make temporary names, this
may be a no-operation.
The mode established bygaderless persists until changed theaders orexternal
Tokenizer: Arrange for subsequently created FCode functions to@setoken , so those functions will be invisible
(internal to their package).
headers (--) T
Newly created functions will be optionally visible.
Arrange for subsequently created definitions to have, at the user’s discretion, either permanent namestesadith
or temporary names as witleaderless . In implementations that lack the ability to make temporary names, this may
be a no-operation. Otherwise, the means for controlling whether names are permanent or temporary shall be the same as
that used byamed-token
The mode established bygaders persists until changed lexternal orheaderless
Tokenizer: Arrange for subsequently created FCode functions toarsed-token , so those functions will be either
visible or invisible at the user’s discretion (§eede-debug?). This is the default behavior.
help ("{name}<eol>" --)
Provide information for category or specific command.
If nameis a specific command, list help for that command, if available. Otherwise, display an implementation-dependent
message.
Used as: ok help command-name
If nameis a category, list all help messages for commands in that category, or a list of subcategories.
Used as: ok help category-name
If name is omitted, provide general help and a list of available categories.
Commands should be grouped into categories so thhethe messages for a category occupy no more than twenty-three
output lines. Categories may be divided into subcategories. The number and names of categories are implementation-
dependent.
here (--addr) AF OxAD

Return current dictionary pointer.

149

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

hex (tokenizer) (--) AT
Set numeric conversion radix to sixteen.

If hex is encountered in FCode source outside a definition, set the tokenizer’'s numeric conversion radix to dieteen. If
is encountered in FCode source inside a definition, append the following sequence to the FCode program that is being
created:

Tokenizer equivalent: 16 base !
ANS Forth/tokenizer difference: ANS Forth has no separate “tokenizing” behavior.

hold (char --) AF 0x95
Add char in pictured numeric output conversion.

hop (--)
Execute single instruction, or entire subroutine call.

Same astep , except that if the instruction to be executed is a subroutine call, execute the entire subroutine before
stopping, instead of just the call instruction.

If the execution of that subroutine results in encountering another breakpoint, the result is implementation-dependent.

hops (n--)
Executehop ntimes.

[(--index) (R:sys--sys) AF 0x19
Return current loop index value.
ANS Forth note: Also works outside of a definition.

if (C: -- orig-sys) AT
(do-next? --)
If flag is true, execute following code.
Interpretation: (C: -- orig-sys)

Enter compilation state, initiating a temporary current definition in a region of memory other than the data space.
Then perform the compilation semantics of ANS Fdrth

Compilation: (C: -- orig-sys)
Same as ANS Forth.
Run-time: (do-next? --)

Same as ANS Forth.
Tokenizer equivalent: b?branch +offset
ANS Forth note: Also works outside of a definition.

ihandle>phandle (ihandle -- phandle) F 0x20B
Return thgphandlefor the indicatedhandle

immediate (-) A
Declare the previous definition as “immediate”.

>in (-- a-addr) A
variable containing offset of next input buffer character.

init-program (-)
Initialize saved-program-state

Setsaved-program-stat® the ISA-dependent initial program state required for beginning the execution of a client
program.

150

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

input (dev-str dev-len --)
Select the indicated device for console input.
Search for a device node matching the pathname or device-specifier goew-&ly dev-lenThe search process is as

defined in4.3, using the rules given fdind-device , but restore thactive packageo its previous package
afterwards.

If such a device is found, search forriggd method.
If theread method is found, open the device, as witlen-dev .
If the open succeeds, execute the devidastall-abort method, if any.

If any of these steps fails, display an appropriate error message and return without performing the steps following the one
that failed.

If there is a console input device, as indicated by a nozero valuestdthe variable, execute the console input device’s
remove-abort method and close the console input devices&it to theihandleof the newly opened device,
making it the new console input device.

Used as:" device-alias" input

input-device (-- dev-str dev-len) N
Default console input device.
Indicates the device to be established as the console input devitstadlyconsole . dev-stringis adevice-
specifier

Used as: ok setenv input-device device-alias <eol>
Configuration variable typestring[32]. Suggested default valuesyboard .

insert-characters (n--) F 0x15D
defer , insertn spaces to the right of the cursor.
insert-characters is one of thelefer words of the display device interface. The terminal emulator package

executesnsert-characters when it has processed a character sequence that calls for opening space for characters
to the right of the cursor.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Move the remainder of the line to the right, thus losingitlightmost characters in the line, without moving the
cursor. Fill the vacated character positions with the background color.

See also:to , fb8-install

insert-lines (n--) F Ox15F
defer , insertn blank lines at and below the cursor line.
insert-lines is one of thelefer words of the display device interface. The terminal emulator package executes
insert-lines when it has processed a character sequence that calls for opening space for lines of text below the
cursor .

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Move the cursor line and all following lines down, thus losingithettom lines, without moving the cursor. Fill the
n vacated lines with the background color.

See also:to , fb8-install

install-abort () M
Begin polling for a keyboard abort sequence.

Instruct the device driver to begin periodic polling for a keyboard abort sequence. If a keyboard abort sequence is
subsequently encounterezhort is executed.

This command is executed when the device is selected as the console input device.

151

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

install-console (--)

Select and activate console input and output devices.

Activate the console function and select input and output devices as follows:

a) Activate the console so that subsequent input {@yg.) and output (e.gemit) will use the devices selected by
input andoutput

b) Attempt to create screen alias as described in 7.4.5.
c) Executeoutput with the value returned byutput-device
d) Executeénput with the value returned bigput-device

e) If the previous code failed and there faltback device to be used for console functions, select that device as the
console device.

install-console may take other system-dependent actions to ensure that a console device is available in the event of
a failure, and may display messages indicating that such action has been taken.

instance (--) F 0xCO0

Mark next occurring defining word as instance-specific.

Modify the next occurrence @Blue , variable , defer , orbuffer: to create instance-specific data instead of static
data. Re-allocate the data each time a new instance of this package is created.

Used as: ok 30 instance value new-name

.instruction (--)

Display next pending address and instruction.

Display the address where the last breakpoint occurred and the instruction that would have executed next if the breakpoint
had not been there.

The instruction-display format is ISA-specific.

“interrupts K S

intr

Standardgroperty nameo define the interrupts used.
prop-encoded-array
Arbitrary number of interrupt specifiers (bus-specific), each typically encodecdmnétide-int

Specifies the interrupt level(s) used by this device and possibly other appropriate information (such as interrupt vectors).
The level given is the bus-specific (local) level, not the CPU level. The actual format of the data is bus-specific; see the
appropriate Open Firmware machine-specific document for details.

See also:intr

(sbus-interrupt# vector --) F,O 0x117
Creates theifitr " property.
See the description of thentr " property for more details.

“intr " S

152

Standardgroperty namedefines SBus interrupt level(s).

prop-encoded-array
n (CPU_level,intr_vector) pairs, each value encoded aittode-int
CPU_level created by: SBus_levelsbus-intr>cpu encode-int
Vector created by: intr_vector encode-int

If, at the time theihtr " property is created, thective packageoes not have anrterrupts " property, create an
“interrupts " property in addition to theifitr " property, with the following property value:

prop-encoded-array
n SBus_levels, each encoded waticode-int , corresponding to the CPU_levels of theiftr " property value.

This property, with its semantics of creating antérrupts " property, is included as a concession to existing FCode
programs. It should be used only by those FCode programs that require compatibility with older SBus systems. It should
not be used by FCode programs for non-SBus devices. The specification of this property is included here, rather than in an
SBus-specific supplement, because of the possibility that, even on systems that nominally do not support SBus, SBus
devices might be used via a bus-to-bus bridge.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

One of two forms is used:
First form: 50 intr

This is the most common usage. Thie FCode translates tlebus-interrupt&5) to the appropriat€PU_level
(with sbus-intr>cpu), and then creates thitr " property with the CPU interrupt value. Ther_vector
value is always 0.

Second form:

5 sbus-intr>cpu encode-int 0 encode-int encode+

7 sbus-intr>cpu encode-int encode+ 0 encode-int encode+

" intr" property

This form is generally only used when multiple-interrupt levels must be declared. (Multiple-levels cannot be declared
with the first form.)

inverse? (-- white-on-black?) F 0x154
value , indicates how to paint characters.

Thisvalue is part of the display device interface.

Theterminal emulatopackage shall satverse? totrue when the escape sequences that it has processed have
indicated that subsequent characters are to be shown with foreground and background colors exchanégdeand to
indicating normal foreground and background colors, otherwise.

The “fb1 ” and “fb8 ” frame-buffer support packages shall draw characters with foreground and background colors
exchanged ifnverse? istrue , and with normal foreground and background colofalge . If inverse? is
neithertrue norfalse , the result is undefined.

Standard packages that usetdreninal emulatopackage should draw characters with foreground and background colors
exchanged ifnverse? istrue , and with normal foreground and background colofalde

inverse? affects the character display operatidrsw-character , insert-characters ,and
delete-characters , but not the other operations suchrert-lines , delete-lines ,and
erase-screen

inverse-screen? (-- black?) F 0x155
value , indicates how to paint the background.

Thisvalue is part of the display device interface.

Theterminal emulatopackage shall sa@tverse-screen? totrue when the escape sequences that it has processed
have indicated that the foreground and background colors are to be exchanged for operations that affect the background,
and tofalse , indicating normal foreground and background colors, otherwise.

The “fbl " and “fb8 ” frame-buffer support packages shall perform screen drawing operations other than character
drawing operations with foreground and background colors exchanigeeiige-screen? istrue , and with normal
foreground and background colordasse . If inverse-screen? is neithertrue norfalse |, the resultis
undefined.

Standard packages that usettreninal emulatopackage should perform screen drawing operations other than character
drawing operations with foreground and background colors exchanigeeiige-screen? istrue , and with normal
foreground and background colordatse .inverse-screen? affects background operations such as

insert-lines , delete-lines anderase-screen , but not character display operations such as

draw-character , insert-characters anddelete-characters

NOTE—Wheninverse-screen? andinverse? are bothtrue , the colors are exchanged over the entire screen,
and subsequent characters are not highlighted with respect to the (inverse) background. For exchanged screen colors and
highlighted characters, the settings ianeerse-screen? true andinverse? false

invert (x1--x2) AF 0x26
Invert all bits ofx1.

153

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
invert-screen (--) F 0x15C
defer , exchange the foreground and background colors.
invert-screen is one of thelefer words of the display device interface. The terminal emulator package executes
invert-screen when it has processed a character sequence that calls for exchanging the foreground and background

colors (e.g., changing from black-on-white to white-on-black).

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Change all pixels on the screen so that pixels of the foreground color are given the background color, and vice versa,
leaving the colors that will be used by subsequent text output unaffected.

See also:to , fb8-install

[o] (dev-str dev-len --)
Select the indicated device for console input and output.
Executeinput followed byoutput with dev-str dev-lers arguments in both cases.
Used as " device-alias" io
is-install (xt--) F 0x11C
Createopen, other methods for this display device.
Create methods for accessing the display device driver acthe package
Used as:[] my-open-routine is-install
Create the following methods:
open
When later called, execute the display driver’s “my-open-routine” (whose execution takearid initialize the
terminal emulator
write
When later called, pass its argument string tadehminal emulatoffor interpretation.
draw-logo
When later called, execute the display driver's “my-draw-logo” procedure which was installed idédethe word
draw-logo by the driver’s “my-open-routine”.
restore
When later called, execute the display driver's “my-reset-screen” procedure which was installeddeterthe
wordreset-screen by the driver’'s “my-opemoutine”.
is-remove (xt--) F 0x11D
Createclose method for this display device.
Used as:[] my-close-routine is-remove
The createdlose method, when later called, executes the display driver’s “my-close-routine” procedure (whose
execution token igt).
is-selftest (xt--) F Ox11E
Createselftest method for this display device.
Used as:[] my-selftest-routine is-selftest
The createdelftest method, when later called, executes the display driver’'s “my-self-test-routine” procedure (whose
execution token ist).
(is-user-word) (E:...--?22?) F 0x214

154

(name-str name-len xt --)
Create new command named by string, behavixi is
Create a Forth command whose name is givemelnye string The behavior of the new command is given by the
execution tokemxt, which must refer to a static method.
Used as:" new-name" [] old-name (is-user-word)

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

] (--index) (R:sys--sys) AF Ox1A
Return next outer loop index value.

ANS Forth note: Also works outside of a definition.

key (--char) AF Ox8E
Read a character from the console input device.
If no key has been typed since the lesf orexpect commandskey will wait until a new character is typed. Use
key? to determine if a character is available.

key? (-- pressed?) AF 0x8D
Returntrue if an input character is available from the console input device.

key? is non-destructive; the keyboard character is not consumed.

I (guad gaddr --) F 0x73
Store quadlet tgqaddr.

See: rl!

I, (quad --) F 0xD2
Compile a quadlet into the dictionary (doublet-aligned).
Allocate 4 bytes (withallot) at the current top of the dictionary and store the valiselinto that space. The dictionary
pointer must have been doublet-aligned.

@ (gaddr -- quad) F OX6E
Fetch quadlet frongaddr.

See: rl@

Nl (--n) F 0x5C
The number of address units to a quadlet; typically, four.

N* (nul--nu2) F 0x68
Multiply nulby the value ofl .

la+ (addrl index -- addr2) F 0x60
Incrementaddrl by indextimes the value of .

lal+ (addrl -- addr2) F 0x64
Incrementaddrl by the value ofl .

155

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

label (E: -- addr)
("new-name< >" -- code-sys)
Begin machine-code sequence, leatidr on stack.
Begin creation of an machine-code sequence caladnamelnterpret the following commands as assembler mnemonics.
Commands created lgbel leave the address of the code on the stack when executed.

As with code , label is present even if the assembler is not installed. In this case, machine-code must be entered into
the dictionary explicitly by value, i.e., wity , w,, |, , or, . The machine-code sequence is terminated by, ther
end-code commands.

Used as:

ok label new-name
ok (assembler mnemonics)
ok end-code

Later used as:
new-name (machine-code-addr)
code-syss balanced by the correspondirig or end-code .

Ibflip (quadl -- quad2) F 0x227
Reverse the bytes within a quadlet.

Ibflips (qaddr len --) F 0x228
Reverse the bytes within each quadlet in the given region.

The region begins afaddrand spanen bytes. The behavior is undefineddh is not a multiple ofl .

[bsplit (quad -- b.lo b2 b3 b4.hi) F Ox7E
Split a quadlet into 4 bytes.

The high bits of the 4 bytes are zero.

Icc (charl -- char2) F 0x82
Convert ASClicharlto lowercase.

Convert input values between 0x41 and Ox5A (ASCII A-Z) to 0x61 through 0x7A (ASCII a-z). All other input values are
unchanged.

leave (--) (Risys--) AT
Exit thisdo or ?do loop immediately.

Tokenizer equivalent: b(leave)
ANS Forth note: Also works outside of a definition.

?leave (exit? --) (R:sys--) T
If flag is nonzero, exit thido or ?do loop immediately.
If exit?is nonzero, discard the current loop control parameters. An ambiguous condition exists if they are unavailable.
Continue execution immediately following the innermost syntactically encldsing loop ordo ... ?loop
Tokenizer equivalent: if leave then
See: ANS Forth return stack restrictions

left-parse-string ('strlen char -- R-str R-len L-str L-len)) F 0x240
Split the string at first occurrence of delimitdrar.

R-stringis the string after, anld-string is the string before, the first occurrence of the delimiter. Neither string includes
that first occurence of the delimiter, althoug¥stringmight contain other later occurrences of that character.

If the delimiter does not appear in the argument stRalgnis zero and.-string is the same as the argument string.

156

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

line# (--line#) F 0x152
value , return the current cursor line number.

Return the current vertical position of the text cursor.
NOTE—A value of zero represents the topmost line oftétxe window not the topmost pixel of the frame-buffer.
See: window-top for more details.

#line (--a-addr) F 0x94
variable containing the number of output lines.

a-addris the address of a cell containing the number of output lines since the last user interaction.

#line is set to zero when the command interpreter prompts for a new command line (whenekeprivapt is
displayed). Its value is increased by one wbiens executed.

See: exit? for other conditions in whickline might be set to zero.

linefeed (-- Ox0A) T
ASCII code for “linefeed” character.

Tokenizer equivalent: b(lit) 00 00 00 0x0A

#lines (--rows) F 0x150
value , return number of lines of text taxt window
#lines is avalue that is part of the display device interface. Téreninal emulatopackage uses it to determine the

height (number of rows of characters) of the text region that it managesbIh&dnd “tb8 " frame-buffer support
packages also use it for a similar purpose.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set thialue to the desired height of the text region. That width shall not exceed the value of
screen-#rows

See also:to , fb8-install

literal (C:x1--) AC
(--x1)
Compile a number; later, leave it on the stack.

load (user interface) ("{params}<eol>" --)
Load a program, specified iparams
Skip leading space delimiters. Pafisst-arg delimited by a space. first-arg is the empty string, seevice-specifieto

the default device amakrgumentdo the default arguments as specified below, and proceed with the loading process as
specified below. Otherwise, handiest-arg as follows:

If first-arg begins with the “/” character, or if it the name of a defidedalias setdevice-specifeto first-arg, then
skip leading space delimiters, segumentgo the remainder of the command line.
Otherwise, setdlevice-specifieto the default device aratgumentdo the portion of the command line beginning at
first-arg and continuing to the end of the line (includfirgt-arg itself).

If argumentss the empty string, replace it with the default arguments.

Proceed as follows.

Loading Process:

If the client interface is implemented, sargumentsand thedevice-pattcorresponding tdevice-specifieso they may
be retrieved later via the client interface.

Open, as wittopen-dev , the package specified bigvice-specifierthus obtaining aihandle If unsuccessful, execute

the equivalent odbort , thus stopping the loading process. Otherwise, execute, aaaittmethod , theload

method of thathandle passing the system-dependent default load address to “load” as its argument. Then close, as with
close-dev , thatihandle

If the “load” method succeeds, and the beginning of the loaded image is a valid client program header for the system,
allocate memory at the address and of the size specified in that header, move the loaded image to the address, and perform
the function ofinit-program to initialize saved-program-statso that a subsequegw command will begin execution

of that program.

157

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Default device and default arguments:

The default arguments are given by the valuleaait-file if diagnostic-mode? isfalse , otherwise by the
value ofdiag-file

The default device is determined by the valubaiit-device if diagnostic-mode? isfalse , otherwise by the

value ofdiag-device . Eitherboot-device ordiag-device may contain a list aflevice-specifierseparated by

spaces. If that list contains only one entry, that entry is the default device. If that list contains more than one entry, the
system attempts to open, as wafren-dev , each specified device in turn, beginning with the first entry in the list and
proceeding to the next-to-last entry. If an open succeeds, the device is closed cisseittev , and thatlevice-
specifierbecomes the default device (it will be subsequently opened again by the loading process). If the last entry is
reached without any prior successful opens, the last entry becomes the default device, without having been opened as part
of the default device selection process.

See also:boot .
Used as:ok load device-specifier arguments <eol>

load (package method) (addr --len) M
Load a client program from device to memory.
Load a client program from the device into memory beginning at adatidsseturninglen, the size in bytes of the
program that was loaded.

If the device can contain several such programdngiance-argument&@s returned byny-args) can be used in a
device-dependent manner to select the particular program.

Usage restriction: The package containing tlead method must be open before thead method is executed.

“local-mac-address "X S
Standardgroperty nameo specify preassigned network address.
prop-encoded-array
Array of six bytes encoded witncode-bytes

Specifies the 48-bit IEEE 802.3-style Media Access Control (MAC) (as specified in ISO/IEC 8802-3 : 1993 [B3]) address
assigned to the device represented by the packadeviok typénetwork ”, containing this property. The absence of
this property indicates that the device does not have a permanently assigned MAC address.

Used as:

create my-mac-address 8 c,0¢c, 20¢c,0c, 14 c, 5ec,
my-mac-address 6 encode-bytes " local-mac-address" property

NOTE—In many systems, the MAC address is not associated with the individual network devices, but instead with the
system itself. In such cases, the system-wide MAC address applies to all the network interfaces on that system, and
individual network device nodes might not have mac-address properties. In other cases, especially with plug-in network
interface cards that are intended for use on a variety of different systems, the manufacturer of the card assigns a MAC
address to the card, which is reported via thedl-mac-address " property. A system is not obligated to use that
assigned MAC address if it has a system-wide MAC address.

See also:“network ”, “mac-address " andmac-address

loop (C: dodest-sys --) AT
(--) (R:sysl -- <nothing> | sys2)
Add one to index, then return to the previodasor ?do or exit the loop.
Compilation: (C: dodest-sys --)
Perform the compilation semantics of ANS FdAttBOPR Then, if the current definition is temporary and the depth of the

control flow stack is the same as its depth when the temporary current definition was initiated, perform the compilation
semantics of and execute the temporary current definition.

Run-time: (--) (R:sysl -- <nothing> | sys2)
Same as ANS Forth.

Tokenizer equivalent: b(loop) -offset

ANS Forth note: Also works outside of a definition.

158

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

+loop (C: dodest-sys --) AT

(delta --) (R: sysl -- <nothing> | sys2)
Add deltato index, then return to the previods or exit the loop.

Compilation: (C: dodest-sys --)

Perform the compilation semantics of ANS Fortbop . Then, if the current definition is temporary and the depth of the
control flow stack is the same as its depth when the temporary current definition was initiated, perform the compilation
semantics of and execute the temporary current definition.

Run-time: (delta --) (R:sysl -- <nothing> | sys2)
Same as ANS Forth.

Tokenizer equivalent: b(+loop) -offset

ANS Forth note: Also works outside of a definition.

Ipeek (gaddr -- false | quad true) F 0x222

Attempt to fetch the quadlet gaddr.

Return the data artdue if the access was successfulfadse return indicates that a read access error occurred.

Ipoke (quad gaddr -- okay?) F 0x225

Attempt to store the quadlet ¢gaddr.

Returntrue if the access was successfulfadse return indicates that a write access error occurred.

's ()
Display the names of ttective packags children.

Ishift (x1lu--x2) AF 0x27
Shift x1 left by u bit-places. Zero-fill low bits.

Iwflip (quadl -- quad2) F 0x226
Swap the doublets within a quadlet.

Iwflips (qaddrlen --) F 0x237
Swap the doublets within each quadlet in the given region.
The region begins afaddrand spanten bytes. The behavior is undefineddh is not a multiple ofl .

Iwsplit (quad -- wl.lo w2.hi) F 0x7C
Split a quadlet into two doublets.
The high bits of the two doublets are zero.

m* (n1n2--d.prod) A
Signed multiply with double-number product.

mac-address (-- mac-str mac-len) F 0x1A4

Return a sequence of bytes containing network address.

The address is the Media Access Control (MAC) address to be usetetwak device. The MAC address is denoted
by a sequence afiac-lenbinary bytes beginning atac-str For example, for the 48-bit IEEE 802.3-style MAC address
whose human-readable representatior8i20:15:12:3e:45 ", mac-address would return an array of 6 bytes
containing 0x08, 0x20, 0x15, 0x12, Ox3E, 0x45.

The method by which the MAC address is determined is system-dependent. For example, in some systems,
mac-address returns a system-wide address stored in a system-dependent location, and in other systems, the return
value is derived from thddcal-mac-address " property (if any) of the package corresponding to the current

instance. Other systems might select thec-address from a configuration table.

159

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

“mac-address S
Standardgroperty nameo specify network address last used.
prop-encoded-array
Array of 6 bytes encoded witncode-bytes

Specifies the 48-bit IEEE 802.3-style Media Access Control (MAC) address that was last used by the device represented
by the package, afevice typeénetwork ”, containing this property. This property is created bydjpen method of a
network device.

NOTE—This property is typically used by client programs that need to determine which network address was used by the
network interface from which the client program was loaded.

map (phys.lo ... phys.hivirt len ... mode --) M
Create address translation.
Creates an address translation associating virtual addresses begimitingrat continuing foten ...(whose format
depends on the package) bytes with consecutive physical addresses begipimysgat.. phys.hModeis an MMU-
dependent parameter (typically, but not necessarily, one cell) denoting additional attributes of the translation, for example
access permissions, cacheability, mapping granularity, etmdéis —1, an implementation-dependent default mode is

used. If there are already existing address translations within the region delimiieddoglen .., the result is
undefined.

If the operation fails for any reason, usi@®w to signal the error.
See also:claim , modify ,release |, translate

map-in (phys.lo ... phys.hi size -- virt) M
Map the specified region; return a virtual address.
Create a mapping associating the range of physical addresses begiphiyg lat... phys.rand extending fosizebytes
within this device’s physical address space with a processor virtual address. Return that virtuaviaddress

The number of cells in the liphys.lo... phys.hiis determined by the value of thaddress-cells property of the
node containingnap-in .

If the requested operation cannot be performeldraw shall be called with an appropriate error message, as with
abort"

NOTE—Out-of-memory conditions may be detected and handled properly in the cod milp-in catch

map-low (phys.lo ... size -- virt) F 0x130
Map the specified region; return a virtual address.
Create a mapping associating the range of physical addresses begiphiys lat.. my-spaceand extending fosize
bytes within this device’s physical address space with a processor virtual address. Return that virtuairaddress
Equivalent to:my-space swap " map-in" $call-parent

The number of cells in the liphys.lo... is one less than the number determined by the value #adueess-cells
property of the parent node..

If the requested operation cannot be performeidraw shall be called with an appropriate error message, as with
abort"

NOTE—Out-of-memory conditions may be detected and handled properly in the codg milp-low catch
See alsomap-out

map-out (virt size --) M
Destroy mapping from previousap-in .

Destroy the mapping set up map-in at virtual addressirt, of lengthsizebytes.
See also:free-virtual

mask (--a-addr) F 0x124
variable to control bits tested witmemory-test-suite

The contents of thigariable control which bits out of every cell will be tested witlemory-test-suite . To test
all bits, semask to all ones. To test only the low-order byte of each cell, set just the lower hitskf

Used as: 000000ff mask !

160

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

max (n1n2--nln2) AF Ox2F
Return greater afil andn2.

“max-frame-size " S
Standardgroperty nameo indicate maximum allowable packet size.
prop-encoded-array
Integer, encoded wittncode-int

This property, when declared inétwork ” devices, indicates the maximum packet length (in bytes) that the physical
layer of the device can transmit at one time. This value can be used by client programs to allocate buffers of the

appropriate length.
Used as: 4000 encode-int " max-frame-size" property

max-transfer (-- max-len) M
Return size of largest possible transfer.

Return the size in bytes of the largest single transfer that this device can perform, rounded down to a multiple of
block-size

“memory” S
Random access memory device type.

Standard string of thedevice_type ” property for memory devices.

A standard package with thidévice_type " property value shall implement the following methods:
claim , release

Additional requirements for thdaim andrelease methods:
claim ([phys.lo ... phys.hi] size align -- base.lo...base.hi) Allocate (claim) addressable resource.
release ('phys.lo ... phys.hi size --) Free (release) addressable resource.
The address format Ehys.lo ... phys.hia physical address of the form defined by the parent bus. The allocated
resource is a region of random-access memory.
The allocation length parametgreconsists of one or more cells depending on the parent bus. (See

“#size-cells).
A standard package with thidévice_type " property value shall implement the following properties:
“reg” The property values are as defined for the standagf format, with physical

addresses of the form required by the parent bus. The regions of physical address
space denote the physical memory that is installed in the system, without regard to
whether or not that memory is currently in use.

“available ” The property values are as defined for the standagf format, with physical
addresses of the form required by the parent bus. The regions of physical address
space denote the physical memory that is currently unallocated by the Open
Firmware and is available for use by client programs.

See also:"available ", claim , “reg ”, release , “#size-cells "

memory-test-suite (‘addr len -- fail?) F 0x122
Perform tests of memory, startingaatdr for len bytes.
Returntrue if any of the tests fail and display a failure message on a system-dependent diagnostic output device.

The actual tests performed are machine-specific and often vary depending on diagthestic-mode? istrue or
false
If diagnostic-mode? istrue , send a message to the console output device giving the name of each test.

The value stored imask controls whether only some or all data lines are tested.

min (n1n2--nln2) AF Ox2E
Return lesser ail andn2

161

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

mod (n1n2--rem) AF 0x22

Divide n1 by n2; return remainder.

*/mod (n1n2n3--remquot) A

Calculatenl timesn2; divided byn3.

/mod (n1n2--rem quot) AF O0x2A

Divide n1 by n2; return remainder and quotient.

model (strlen--) F 0x119

Create therhodel ” property; value is indicated string.

Shorthand command to create a property irattive packagevhoseproperty nameas “model .
Equivalent to: encode-string " model" property

Used as:" XYZCO,1416-02" model

See: “model ” glossary entry for more information.

“model ” S

Standardgroperty nameo define a manufacturer's model number.
prop-encoded-array
Text string, encoded wittncode-string

A manufacturer-dependent string that generally specifies the model name and number (including revision level) for this
device. The format of the text string is arbitrary, although in conventional usage the string begins with the name of the
device’s manufacturer as with thedme” property.

Although there is no standard interpretation for the value ofrtigalél ” property, a specific device driver might use it to
learn, for instance, the revision level of its particular device.

See also:property , model .
Used as:" XYZCO0,1416-02" encode-string " model" property

modify (virtlen ... mode --) M

Modify existing address translation.

Modifies the existing address translations for virtual addresses beginnimgartd continuing folen ...(whose format
depends on the package) bytes to have the attributes specifisatigyas withmap.

If the operation fails for any reason, usi@®w to signal the error.

See also:claim , map, release ,translate , unmap

move (' src-addr dest-addr len --) AF 0x78

ms

162

Copylen bytes fromsrc-addrto dest-addr

(n--) AF 0x126
Delay for at leash milliseconds.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

my-address (-- phys.lo ...) F 0x102
Return low component(s) of device’s probe address.
phys.lo... are the low components (i.e., all components other thaghtisehicomponent) of the physical address that was

established bget-args when the device node for the current instance was creatsd-dfgs has not been
executed in the context of that node, all address components are zero. The meaning of that physical address is bus-specific.

The number of cells in the liphys.lo... is one less than the number determined by the value #adueess-cells
property of the parent node.

Usually, this value is used to calculate the location(s) of the device registers, which are then saved as the property value of
the ‘reg ” property and later accessed witty-unit

Historical note: In some prior implementations, the value returnedigyaddressould change between the time that a
particular FCode program was evaluated and a later time after the corresponding package was finished. Consequently, an
FCode program that needs to be compatible with those older implementations should save the value returned by
my-address during FCode evaluation (perhaps by creatiogrsstant with that value) if it will be needed

afterwards.

my-args (-- arg-str arg-len) F 0x202
Return thaénstance-argumerttring for this instance.

Return thaénstance-argumerttring that was passed to the current instance (when the current instance was created).

my-parent (--ihandle) F 0x20A
Return thehandleof the parent of the current instance.

Return thehandleof the instance that opened the current instance.

my-self (--ihandle) F 0x203
Return thahandleof thecurrent instancelf there is no current instance, return zero.

my-self is avalueword; its value can be set with the phraseny-self , establishing a newurrent instance

my-space (-- phys.hi) F 0x103
Return high component of device’s probe address.
phys.hiis the high component of the physical address that was establisketidngs when the device node for the

current instance was createdsét-args has not been executed in the context of that n@ues.hiis zero. The
meaning of that physical address is bus-specific.

Usually, this value is used to calculate the location(s) of the device registers, which are saved as the property value of the
“reg " property and later accessed with thg-unit command.

NOTE—In some prior implementations, the value returnedgyspacecould change between the time that a particular
FCode program was evaluated and a later time after the corresponding package was finished. Consequently, an FCode
program that needs to be compatible with those older implementations should save the value retuwyrszhbg

during FCode evaluation (perhaps by creatimgrastant with that value) if it will be needed afterwards.

my-unit (-- phys.lo ... phys.hi) F 0x20D
Return thaunit addresf the current instance.

Theunit addresss set when the instance is created, as follows:

If the node nameised to locate the instance’s package contained an explicaddressthat is the instancetsit
address (This explicitunit addresswill match the first component of tlmeg property, if present. This clause
handles the case where there igem property, i.e., a “wildcard” node.)

Otherwise, if the device node associated with the package from which the instance was created coggains a “
property, the first component of its property value is the instancé address

Otherwise, the instanceisit addresss O ... 0.

The number of cells in the liphys.lo... phys.hiis determined by the value of thaddress-cells property of the
parent node.

/n (--n) F 0x5D
The number of address units in a cell.

163

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

/n* (nul--nu2) T
Synonym forcells

Tokenizer equivalent: cells

na+ (‘addrl index -- addr2) F 0x61
Incrementaddrl by indextimes the value oh .

nal+ (addrl -- addr2) T
Synonym forcell+

Tokenizer equivalent: cell+

13 nameﬂ S
Standardgroperty nameo define the name of the package.

prop-encoded-array
Text string, encoded wittncode-string

Represents the name of this package. The string consists of a sequence of 1 to 31 letters, digits, and punctuation characters

from the set;'._+-". The string shall contain, at most, one comma. Uppercase and lowercase letters are considered

distinct.

For plug-in devices, the value string shall begin with a company name string in one of the following forms, followed by a
comma (*,").

“ONNNNNN whereNNNNNNE a sequence of 6 uppercase hexadecimal digits representing the company’s 24-bit
Organizationally Unique Identifier (OUI) assigned by the IEEE Registration Authority Committee (RAC). To obtain
an OUI, contact:

Registration Authority Committee
The Institute of Electrical and Electronic Engineers, Inc.
445 Hoes Lane
Piscataway, NJ 08855-1331
USA
(908) 562-3815

This is the recommended form of company name, as it is guaranteed to be unique worldwide.

“VWXYZ whereVWXY4s a sequence of from one to five uppercase letters representing the stock symbol of the company
on any stock exchange whose symbols do not conflict with the symbols of the New York Stock Exchange and the
NASDAQ exchange. (In practice, all United States stock exchanges comply with this rule, but other stock exchanges
worldwide do not necessary coordinate their symbols with NYSE and NASDAQ.)

This form of company name is allowed as a concession to existing practice.

“pdgxyz ", wherepdqgxyz is any string that cannot be confused for one of the above forms (perhaps by containing
characters that are not allowed by those forms such as lowercase letters, or by being longer than five letters).

This form of company name is permitted, but discouraged, because of the possibility that two different companies
might choose the same name.

A standard package shall define this property.
Used as:

" XYZQ,devhame" encode-string " name" property
See also:property , device-name

164

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

named-token (--) F 0xB6
(F: /FCode-string FCode#/ --)
Create a new possibly named FCode function.

FCode evaluation: (F: /FCode-string FCode#/ --)

Read ar-Code-string then arFCode# from the current FCode program. Create a new FCode function, associating with
it the FCode numbdfCode# The new function's execution semantics are initially undefined; they will be determined
later by the execution of eithb(:) , b(create) , b(defer) ,b(constant) , b(buffer:) , b(field) ,

b(variable) , orb(value)

At the system’s discretion (typically controlled fepde-debug?), either leave the new function unnamed or associate

it with the name given blfCode-string If the function is unnamed, the only way to refer to it later is via its associated
FCode number; it cannot be accessed by name from the user interface or via other mechadisatisrtie¢hod . If

the function is named, it becomes a method of the current node. That method can later be executed with, for example,
$call-method

FCODE ONLY (Tokenized by defining words imaders mode)

negate (n1--n2) AF 0x2C
Return negation afil

Equivalentto: 0 swap -

“network ” S
Packet-oriented network device type.

Standard string value of theévice_type ” property for network devices with IEEE 802 packet formats.
A standard package with thidévice_type " property value shall implement the following methods.
open, close ,read ,write ,load
Additional requirements for thepen method:
Executemac-address and create afiac-address " property with that value.
Additional requirements for threead method:

Receive (non-blocking) a network packet, placing at most thddirgtytes of that packet into memory starting at
addr. Return the number of bytes actually received (not the number copied into memory), or zero if no packet is
currently available.

Discard packets containing hardware-detected errors, as though they were not received.
Additional requirements for therite method:

Transmit the network packet of lendém bytes from the memory buffer beginninggaldr. Return the number of
bytes actually transmitted.

The packet to be transmitted begins with an IEEE 802 Media Access Control (MAC) header.

Usage restriction: The caller must supply the complete header; the source hardware address will not necessarily be
“automatically inserted” into the outgoing packet.

Additional requirements for thead method:
Read the default client program into memory, startirefdt, using the default network booting protocol.
A standard package with thidévice_type " property value may implement additional device-specific methods.

A standard package with thidévice_type " property value shall implement the following property if the associated
device has a preassigned IEEE 802.3-style MAC (network) address:

“local-mac-address "
NOTE—Such packages often use tlobp-tftp ” support package to implement tHedd " method.
See also’address-bits 7, “max-frame-size "

new-device (--) F Ox11F
Start new package, as childaitive package
Create a new device node as a child ofatttere packag@and make the new node thetive packageCreate a new

instance and make it the current instance; the instance that invelkedevice becomes the parent instance of the new
instance.

Subsequently, newly defined Forth words become the methods of the new node and newly defined data items (such as
typesvariable ,value , buffer: |, anddefer) are allocated and stored within the new instance.

165

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

new-token (--) F 0xB5

(F: /FCode#/ --)
Create a new unnamed FCode function. FolloweB®yde#

FCode evaluation: (F: /IFCode#/ --)

Read ar-Code#from the current FCode program. Create a new FCode function, associating with it the FCode number
FCode# The new function’s execution semantics are initially undefined; they will be determined later by the execution of
eitherb(:) , b(create) ,b(defer) ,b(constant) , b(buffer:) , b(field) , b(variable) , or

b(value)

The new function is unnamed, thus the only way to refer to it later is via its associated FCode number; it cannot be
accessed by name from the user interface or via other mechanis$sdikenethod

Usage restriction: A standard FCode program shall nssv-token only with FCode numbers in the program-defined
range.

FCODE ONLY (Tokenized by defining words imeaderless mode)

next-property (previous-str previous-len phandle -- false | name-str name-lentrue) F 0x23D

nip

Return thenameof the property followingreviousof phandle

Nameis a null-terminated string that is the name of the property follopiagiousin the property list for devicghandle
If previousis zero or points to a zero-length stringmeis the name of thehandle’sfirst property. If there are no more
properties aftepreviousor if previousis invalid (i.e., names a property that does not exighandlg, nameis a pointer
to a zero-length string.

(X1 x2--%x2) AF 0x4D
Remove the second stack item.

nodefault-bytes (E: -- addr len)

(maxlen "new-name< >" --)
Create custom configuration variable of sizaxlen

If the requested operation cannot be performeidraw shall be called with an appropriate error message, as with
abort"

NOTE—Out-of-memory conditions may be detected and handled properly in the codg]witkdefault-bytes
catch .

Users can create nesonfiguration variabls with thenodefault-bytes command. Although the values of user-
createdconfiguration variabls persist across system resets, in order for them to be accessed Open Firmware must be
“reminded” of their existence after every system reset. Furthermoneodedault-bytes commands creating them
must be executed in the same order each time. For these rewstefault-bytes is usually executed from the

script

nodefault-bytes creates @onfiguration variablevhose data is of type byte-array. As with other built-in byte-array
configuration variabls, these user-creatednfiguration variable can be set witeetenv (restricted to printable
characters) ogsetenv and can be displayed with thentenv. command. Howeveget-default and

set-defaults have no effect on user-creatmshfiguration variabls.
Used as: ok 100 nodefault-bytes new-name
Later used as: (data-addr data-len) " new-name" $setenv

Later used as: new-name (data-addr data-len)

noop (-) F 0x7B

Do nothing.

NOTE—noop is primarily used for debugging or testing purposes, such as a placeholder for patching in other commands
or to provide short delays for debugging device-timing problems.

noshowstack (--)

166

Turn off showstack (automatic stack display).

The system default isoshowstack
See: showstack .

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

not (x1--x2) T
Synonym forinvert

Tokenizer equivalent: invert

$number (‘addr len -- true | n false) F OxA2
Convert a string to a number.

Perform the conversion according to the current vallmage . Returntrue if an inconvertible character is encountered.

>number (d1strllenl -- d2 str2 len2) A
Convertstring to a number; add tl.

nvalias ("alias-name< >device-specifier<eol>" --)
Create nonvolatile device alias; edit suipt

Create the following command line in theript
devalias alias-name device-specifier

If the scriptalready contains devalias line with the samalias name, delete that entry and replace it with the new
entry at the same location in teeript Otherwise, place the new entry at the beginning o$c¢hipt

If there is insufficient space in tteeript for the newdevalias command, display a message to that effect and abort
without modifying thescript

If the scriptwas successfully modified, execute the mmwvalias command immediately, creating a new memory-
resident alias.

If the scriptis currently being edited (i.eavedit has been executed, but has not been completed with mitstere
ornvquit), abort with an error message before taking any other action.

If the scriptwas successfully modified, buse-nvramrc? isfalse , setuse-nvramrc? totrue .
Used as:ok nvalias alias-name /full/pathname <eol>

$nvalias (name-str name-len dev-str dev-len --)
Create nonvolatile device alias; edit suipt
Performs the same functionagalias , except that parameters are stack strings. Alias name is specifiathieystring
Device-specifier is specified l@ev-string
Used as: ok " new-alias" " device-specifier" $nvalias

nvedit ()
Enter thescript editor (exit with*c).
nvedit operates on a temporary buffer. If data remains in the temporary buffer from a preagdiis , editing will

resume with those previous contents. If meedit will read the contents of theeriptinto the temporary buffer and
begin editing the temporary buffer.

Editing continues untitc is typed, at which point editing ceases and normal operation of the command interpreter is
resumed. The contents of the temporary buffer are not automatically savedddpghé¢henvstore command must be
executed afterwards to save the buffer intosttrépt

The Intra-line Editing keystrokes are used withinghept editor, with some additions.
See: 7.4.4.2.

nvquit (-)
Discard contents afvedit temporary buffer.

Prompt for confirmation of the user’s intent to carry out this function. If confirmation is obtained, discavediite
temporary buffer. Otherwise, take no further action.

167

IEEE
Std 1

275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

nvramrc (-- data-addr data-len) N

Contents of thecript

The size of thecriptregion is system-dependent.

While it is possible to alter the contents of fleeipt with setenv or the$setenv command, use of treeript editor is
preferred.

The contents of thecript are cleared bget-defaults . Under some circumstances cleared contents can be recovered
with nvrecover

The commands in thecript are interpreted during system start-up, but onbsé-nvramrc? istrue .
Configuration variable typestring[?]. Suggested default value: an empty string.
See: nvedit for more details on altering its contents.

nvrecover (--)

Attempt to recover lostcript contents.

Attempt to recover the contents of theriptif they have been lost as a result of the executiGettiefault or
set-defaults . Enter the thecript editor as with th@vedit command. In order farvrecover to succeed,
nvedit must not have been executed between the time thattipécontents were lost and the time thatecover
is executed.

nvrun (-)

Execute the contents of theedit temporary buffer.

nvstore (--)

Copy contents afivedit temporary buffer into thscript

Thenvedit temporary buffer is then cleared. Used afteedit to save the results of an editing session intcthipt

nvunalias ("alias-name< >" --)

Delete nonvolatile device alias from tbeript

If the script contains alevalias command line with the same nameatias-name delete that command line from the
script Otherwise, leave the&cript unchanged. If thecriptis currently being edited (i.eavedit has been executed, but
has not been completed with eitimstore ornvquit), abort with an error message before taking any other action.

Used as:ok nvunalias alias-name

$nvunalias (name-str name-len --)

o#

168

Delete nonvolatile device alias from tbeript

Perform the same function agunalias , except that the alias name is specifiechane string
Used as:ok " alias-name" $nvunalias

([number< >] --n) T
Interpret the following number as an octal number (base eight).
Interpretation: ([number< >] --n)

Skip leading space delimiters. Pamsenberdelimited by a space. Convert the stimgnberto an integen using a
conversion radix of eight. Paton the stack. An ambiguous condition exists if the conversion fails.

Compilation: ([number< >] --)

Skip leading space delimiters. Pamsanberdelimited by a space. Convert the stimgnberto an integen using a
conversion radix of eight. Append the run-time semantics given below to the current definition. An ambiguous condition
exists if the conversion fails.

Run-time:run-time (-n)

Placen on the stack.

Interpret the number in octal regardless of the current valo@si& . The value irbase is unchanged.
Used as:o# 1001 (513)

Tokenizer equivalent b(lit) xx-byte xx-byte xx-byte xx-byte

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

“obp-tftp ” S
Support package, implements TFTP protocol.

See: 3.8.2 for more information.

octal (.) T
Set numeric conversion radix to eight.
Tokenizer: If octal is encountered in FCode source outside a definition, set the tokenizer's numeric conversion radix to

eight. Ifoctal is encountered in FCode source inside a definition, append the following sequence to the FCode program
that is being created.

Tokenizer equivalent: 8 base !

oem-banner (-- text-str text-len) N
Contain custonbanner text, enabled bgem-banner? .

Configuration variable typestring[80]. Suggested default value: an empty string.

oem-banner? (-- custom?) N
If true , banner displays custom messagedem-banner .

If true , banner displays a custom message instead of the normal system-dependent messages.
If false , banner displays the normal system-dependent messages.
Configuration variable typ@oolean Suggested default valuise

oem-logo (-- logo-addr logo-len) N
Contain custom logo fdsanner , enabled bpem-logo? .

This logo is displayed by tHeanner command ifoem-logo? istrue .

The logo is a 512-byte field, representing a 64x64-bit logo bit map. Each bit controls one pixel. The most significant bit of
the first byte controls the upper-left corner pixel. The next bit controls the next pixel to the right and so on.

oem-logo cannot receive arbitrary data withtenv , but$setenv can be used to set its value.
oem-logo is unaffected byget-default or set-defaults

Used as: (logo-addr logo-len) " oem-logo" $setenv

Configuration variable typdaytes[512] Suggested default value: all zeroes.

oem-logo? (-- custom?) N
If true, banner displays custom logo inem-logo .
If true, banner will display the custom logo instead of the normal system-dependent logo.
If false banner will display the normal system-dependent logo.
Configuration variable typ@oolean Suggested default valuise

of (C: case-sysl -- case-sys?2 of-sys) AT
(sel of-val -- sel | <nothing>)
Beginof clause, execute througimdof if params match.
Used within acase statement.
Tokenizer equivalent: b(of) +offset
ANS Forth note: Also works outside of a definition.

off (a-addr --) F 0x6B
Storefalse to cell ata-addr.

169

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

offset (d.rel --d.abs) M

Convert partition-relative disk position to absolute position.

This is a method of the disk label support packdgel is a double-number disk position, expressed as the number of

bytes from the beginning of the partition that was specified in the arguments when the support package wasaiyzened.

is the corresponding double-number disk position, expressed as the number of bytes from the beginning of the disk. If no
partition was specified when the support package was opened, a system-dependent default partition is used. If the disk
label support package does not support disk partitiodiadpsis equal tad.rel.

offset16 () F 0xCC

All further branches use 16-bit (not 8-hiffses.

Sets thé=Code-offsesize to 16 bits. Within the current FCode program, subsequent FCode functions thatif€adexn
offsetread the 16-bit form.

Tokenizer: Execution (once only) afffsetl6 causes the tokenizer to use the 16-bit form, rather than the 8-bit form,
for all subsequerftCode-offset within this FCode program.

A tokenizer may automatically inserffsetl6 at the beginning of an FCode program.

Onceoffsetl6 is executed, the offset size remains 16 bits for the duration of the FCode program,; it cannot be set back
to 8 bits. Multiple calls 0bffsetl6 have no additional effeatffsetl6 is only useful within an FCode program that
begins withversionl . All other starting tokenssfart0 , startl , start2 , andstart4) automatically set the

offset size to 16 bits.

FCODE ONLY

on (a-addr --) F Ox6A
Storetrue to cell ata-addr.

open (-- okay?) M

Prepare this device for subsequent use.

Typical behavior is to allocate any special resource requirements it needs, map the device into virtual address space,
initialize the device and perform a brief “sanity test” to ensure that the device appears to be working correctly.
Returntrue if this open method was successfédlse if not.

When a device’'spen method is called, that device’s parent has already been opened (and so on, up to the root node,
which has no parent), so thipen method can call its parent’s methods, for instance to create mappings within the
parent’s address space.

Several device types require the existence afpggn method, particularly those witlkad andwrite methods.

open-dev (dev-str dev-len -- ihandle | 0)

Open device (and parents) hamed by given device-specifier.

Open the device specified lgv-string Returnihandleif successful, or 0 if not. Open each node of the device tree in
turn, starting at the top. Thrairrent instanceand theactive packagare not changed.

The opening process is as defined in 4.3, using the rules givepdordev .

Used as:" device-alias" open-dev

open-package (‘arg-str arg-len phandle -- ihandle | 0) F 0x205

170

Open the package indicated flyandle
Create an instance of the package identifieghmndle save in that instance tiestance-argumergpecified byarg-
string and invoke the packagedpen method.

Return the instance handtendleof the new instance, or 0 if the package could not be opened. This could occur either
because that package hasopen method, or because ipen method returnethlse , indicating an error.

The parent instance of the new instance is the instance that inmp&eé¢package . The current instance is not
changed.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

$open-package (‘arg-str arg-len name-str name-len -- ihandle | 0) F 0x20F
Open the support package namedbagne string
Similar tofind-package ...open-package , except that ifind-package fails, returns 0 immediately, without
calling open-package
Equivalent to: find-package if open-package else 2drop false then

“/openprom ” S
The node describing this Open Firmware implementation.

See:3.5for a complete description.

“/options " S
The node containing this system’s configuration variables.

See:3.5for a complete description.

or (x1x2--x3) AF 0x24
Return bitwise logical “inclusive-or” of1 andx2.

#out (-- a-addr) F 0x93
variable holding the output column number.

Increment the value when a character is displayed and reset to zerorwiseexecuted.

output (dev-str dev-len --)
Select the indicated device for console output.
Search for a device node matching the pathname or device-specifier goew-&ly dev-lenThe search process is as

defined in 4.3, using the rules given fird-device , but restore thactive packageo its previous package
afterwards.

If such a device is found, search fonitdste method.
If thewrite method is found, open the device, as wipen-dev .

If any of these steps fails, display an appropriate error message and return without performing the steps following the one
that failed.

If there is a console output device, as indicated by a nozero valuestddloe variable, close the console output device.
Setstdout to the ihandle of the newly opened device, making it the new console output device.

Used as: " device-alias" output

output-device (-- dev-str dev-len) N
Default console output device.

Indicates the console output device to be establishéustajl-console . dev-stringis a device-specifier, containing
either a full device-path or a pre-defined device alias.

Used as: ok setenv output-device device-alias <eol>
Configuration variable typestring[32]. Suggested default valugcreen .

over (x1x2--x1x2x1) AF 0x48
Copy second stack item to top of stack.

2over (x1 x2 x3 x4 -- X1 x2 x3 x4 x1 x2) AF 0x54
Copy second pair of stack items to top of stack.

pack ('str len addr -- pstr) F 0x83
Pack a text string into a counted string.

Store the stringtr,lenas a counted string beginning at the addaesis, returning the resuftstr, which is the same
address aaddr. At most 256 characters, including the count byte, shall be stored in the sadaly. at

171

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
“/packages ” S

The node containing all standard support packages.

For example, thedisk-label " support package is located in the device tredpaickages/disk-label "

See also:3.8.
parse (delim "text<delim>" -- str len) A

Parse text from the input buffer, delimited dslim

parse-2int (strlen -- val.lo val.hi) F 0x11B
Convert a “hi,lo” string into a pair of values.

In the stringyval.hiis first, separated frowal.lo by a comma.
Used as:" 33,555" parse-2int (555 33)
Perform the conversion according to the current vallmge .

If the string does not contain a commaal.lo is zero andval.hiis the result of converting the entire string. If either
component contains non-numeric characters, according to the valasen the result is undefined.

parse-word ("text< >" -- strlen)
Parse text from the input buffer, delimited by white space.

Skip leading spaces and parsemedelimited by a spacestr is the address (within the input buffer) dadis the length
of the selected string. If the parse area was empty, the resulting string has a zero length.

password (--)
Prompt user to set security password.
Prompt the user (twice) to enter a new password, terminated by end-of-line. Do not echo the password on the screen as it
is typed. The password length is zero to eight characters in length. Ignore any additional characters (more than eight).

If the entered password is the same both times, store the new password semgity-password . Note that
security-mode must be set to enable password protection.

patch ("new-name< >old-name< >word-to-patch< >" --)
Change contents @ford-to-patch
In the compiled definition ofvord-to-patch change the first occurrenceal-nameto new-nameWorks properly even if
old-nameand/ormew-nameare numbers.
Used as:ok patch 555 test patch-me
to edit the definition opatch-mereplacing the commandstwith the literal value 555.
Implementation note:

When replacing a command with a number, an implementation might need to automatically create a named constant value
for the replacement number. (The reason is that Forth commands often compile into a smaller memory space than literal
numbers, so patching a number in place of an existing command is a problem.) A suggested namdformatii®.,

the number 555 (hex) would be namé@555 ” . A name containing only digits (.55 constant 555) is not
recommended, since changipgse would cause incorrect evaluation of subsequent uses of that named value.

(patch) (new-n1 num1? old-n2 num2? xt --)
Change contents of command indicatedby
In the compiled definition of the command indicatedkbychange the first occurrenceall-n2to new-nl1 n1 andn2 can

each be either an execution token or a literal number. Thadiad ? if true , indicates thanew-nlis a literal number.
If false , it indicates thahew-nlis an execution token. The flagm2?is interpreted similarly.

Used as:['] new-name false 555 true [] patch-me (patch)
to edit the definition opatch-mereplacing the value 555 with the commaedv-name
See: patch for more information.

172

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

peer (phandle -- phandle.sibling) F 0x23C

pick

Return the phandle of the next sibling node.

Phandle.siblings the node identifier of the node that is the next sibling of the device descripbdriaife or zero if
there are no more siblings.ghandleis zero,phandle.siblings the node identifier of the root node.

(xu...x1x0u--xu...x1x0xu) AF Ox4E

Copyuth stack item to top of stack.
Remaining stack items are unchanged.
For example:

0 pick <=> dup

1 pick <=> over

postpone (C: [old-name< >] --) AC
(... - ?2??)

Delay execution of the immediately following command.

printenv ("{param-namel}<eol>" --)

Display current, default value obnfiguration variablegor all).

Parseparam-namedelimited by end-of-line. lparam-names missing, display the current and default values of all
configuration variablesOtherwise, display the current and default values ofdnéiguration variablegiven whose name

is param-name

The values are displayed in their output text representation form. The overall display format is implementation-dependent.
A Open Firmware implementation may, at its option, display an abbreviated form of some of the values and may suppress
the display of nonprintable characters.

Used as: ok printenv selftest-#megs<eol>

probe-all (--)

Probe for all available plug-in devices.

Search for plug-in devices on the system-dependent set of expansion buses, creating device nodes for devices that are
located.

NOTE—Undesireable results, such as duplicate device nodes for the same device, mightpoaberall is

executed more than once. It is normally executed automatically during system start-up following the evaluation of the
script, but this automatic execution is disabletahner orsuppress-banner is executed from thecript

probe-self (‘arg-str arg-len reg-str reg-len fcode-str fcode-len --) M

Evaluate FCode as a child of this node.

fcode-stringis aunit addresgext string, representing the location of the FCode program for the child device.
reg-stringis aprobe-addressext string, representing the location of the child device itself.

arg-stringis ainstance-argumenteext string, providing the arguments for the child (which can be retrieved within the
child's FCode program with thmy-args FCode.)

First check to see if there is an FCode program at the indicated location (perhaps by mapping the devicecpeekising
to ensure that the device is present and that the first byte is a valid FCode start byte). If so, perform the function of
new-device (thus creating a new device node), then interpret the FCode program, then perform the function of
finish-device

If a valid FCode program cannot be located at the indicated address, do not create a new device node.

A typical implementation oprobe-self ~ might executdyte-load andset-args

NOTE—If the FCode program is a standard package, successful complepimbefself will be indicated by the
presence of a new device node containinganfe’ property. If the evaluation of the FCode program fails in some way,
the new device node might be empty (containing no properties or methods.)

.properties (-)

Display hames and values of properties ofdtiive package

173

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

property (prop-addr prop-len name-str name-len --) F 0x110

pwd

quit

>

r@

>r

174

Create a new property with the given nhame and value.

If there is acurrent instancecreate a property in the package from whichctireent instancevas created. Otherwise, if
there is aractive packagecreate a property in tlaetive packagelf there is neither aurrent instancenor anactive
packagethe result is undefined. The new properfy'sperty names given byname stringand its value is given by the
prop-encoded-arraprop-addr prop-len

If a property with thaproperty namelready exists in the package in which the property would be created, replace its
value with the new value.

See the specifications of individual property for any additional requirements.

Used as: 55 encode-int " my-property-name" property

(--)
Display the device-path that names #otive package
() (R:...--) A
Abort program execution.
(-x) (R:ix-) AF 0x31

Move top return stack item to the stack.

Usage restrictions: See ANS Forth return stack restrictions.
ANS Forth note: Usage also allowed while interpreting.

(-x) (R:x--x) AF 0x32
Copy top return stack item to the stack.

Usage restrictions: See ANS Forth return stack restrictions.
ANS Forth note: Usage also allowed while interpreting.

(nsize --) AF Ox9E
Display a signed number, right-justified.

(x--) (R:--x) AF 0x30
Move top stack item to the return stack.

Usage restrictions: See ANS Forth return stack restrictions.
ANS Forth note: Usage also allowed while interpreting.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

“ranges ” S
Standardgroperty nameo define a device’s physical address.

Buses such as SBus and VMEbus, whose children can be accessed with CPU load-and-store operations (as opposed to
buses such as SCSI or IPI, whose children are accessed with a command protocol), require a way to define the relationship
between the physical address spaces of the parent and child nodesinbies “” property provides this capability.

The value of theranges ” property describes the correspondence between the physical address space defined by a bus
node (the “child address space”) and the physical address space of that bus node’s parent (the “parent address space”).
The ‘ranges ” property value is a sequence of
child-phys parent-phys size
specificationsChild-physis an address, encoded as vétitode-phys , in the child address spadtarent-physs an
address (likewise encoded as weticode-phys) in the parent address spaSeeis a list of integers, each encoded as
with encode-int , denoting the length of the child’s address range. The number of integers sizegcttry is
determined by the value of tisize-cells property ofthis node (the node in which theghges ” property appears)
or 1 if the#size-cells property is absent. The interpretatiorsizieis bus-dependent.

Each specification defines a one-to-one correspondence between the child addresses indhiédrpigs.child-

phystsize-1 and the parent addresses in the rggagent-physparent-physsize-1. The address ranges thus described

might (and often will) define a sparse address space, i.e., the address ranges need not be consecutive in either the child
address space or the parent address space. Successive specifications are encoded one after another. It is recommended, but
not required, that the specifications be sorted in ascending ordeitddphys

If a “ranges ” property exists but has a zero-length property value, the child address space is identical to the parent
address space.

The absence of adnges ” property for a bus node indicates that there is no direct correspondence between the child
address space and the parent address space, e.g., the bus is a command protocol bus such as SCSI.

Example: Suppose that a 4-slot, 28-bit SBus is attached to a machine whose physical address space consists of a 32-bit
memory spacephys.hi0) and a 32-bit i/lo spacplys.hi1). The SBus slots are numbered 0, 1, 2, and 3, and appear in

i/o space at addresses 0x80000000, 0x90000000, 0xA0000000, and 0xB0O0O0000O, respectivelgg&he’ property

for this “sbus ” device node would contain the encoded form of the following sequence of numbers:

”

Child Address Parent Address Size
phys.hi phys.lo phys.hi phys.lo
0 0 1 8000.0000 | 1000.000Q
1 0 1 9000.0000 | 1000.000Q
2 0 1 A000.0000| 1000.0000
3 0 1 B0000000 1000.0000
See also:"#size-cells
rb! (FCode function) (‘byte addr --) F 0x231

Store a byte to device registeraatdr.

Data is stored with a single access operation and flushes any intervening write buffers, so that the data reaches its final
destination before the next FCode function is executed.

Register is stored with identical bit ordering as the input stack item.

rb! (user interface) (byte addr --)
Store a byte to device registeraatdr.
Compilation: (--)

Perform the equivalent of the phrase:

h# 231 get-token if execute else compile, then
Interpretation: (' byte addr --)
Perform the equivalent of the phrase:

h# 231 get-token drop execute

NOTE—A bus device can substitute (ses-token) a bus-specific implementation df! for use by its children.
This is sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The
given user interface semanticsrbf ensure that such substitutions are visible at the user interface level.

175

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

rbo@ (FCode function) (addr -- byte) F 0x230
Fetch a byte from device registeraaidr.

Data is read with a single access operation.
Result has identical bit ordering as the original register data.

rbo@ (user interface) (addr -- byte)
Fetch a byte from device registeraaidr.
Compilation: (--)

Perform the equivalent of the phrase:

h# 230 get-token if execute else compile, then
Interpretation: (addr -- byte)
Perform the equivalent of the phrase:

h# 230 get-token drop execute

NOTE—A bus device can substitute (ses-token) a bus-specific implementation df@ for use by its children.
This is sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The
given user interface semanticsrbf@ ensure that such substitutions are visible at the user interface level.

read (addr len -- actual) M
Read device into memory buffer; return actual byte count.

Read at moden bytes from the device into the memory buffer beginnirefdt. Returnactual the number of bytes
actually read. lactualis zero or negative, the read operation did not succeed.

Some standard device types impose additional requirements oredeeirmethods; see the descriptions of various device
types (e.g., ietwork ") for more information.

For some devices, tleeek method sets the position for the nesad .

read-blocks (‘addr block# #blocks -- #read) M
Read#blocks starting ablock# from device into memory.

Read#blocksrecords of lengthblock-size bytes from the device (starting at device blbtdck# into memory
(starting ataddr). Return#read the number of blocks actually read.

If the device is not capable of random access (e.g., a sequential access tapebbmk#ey,ignored.

recurse (...--?2?27?) AC
Compile recursive call to the command being compiled.

recursive (--) C
Make current definition visible, for recursive call.
Compilation: (-)

Allow the current definition to be found in the dictionary.

NOTE—Normally, when a colon definition is being compiled, its name is not visible in the dictionary until the definition
is completed. This way a call to that same name finds the previous version, noeitsetive makes the current
definition visible so that subsequent uses of its name compile recursive calls to itself.

176

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

reg (phys.lo ... phys.hi size --) F 0x116
Create thereg " property with the given values.
Shorthand command to create a property irattizve packagevhoseproperty names “reg ” for buses whose
“#size -cells ”value is one.
Equivalent to:

>r (phys.lo ... phys.hi) encode-phys (addrlen)
r> (‘addrl lenl size) encode-int (addrl lenl addr2 len2)

encode+ (addrlen)
"reg" property
Thereg function creates arég " property with a singlg@hys.lo... phys.hi sizespecification. It is not appropriate to use
reg if the parent specifies a@8ize -cells ”value other than one. To createrad ” property with multiple
specifications, theroperty command must be used.

Used as: my-address 8000 + my-space 40 reg
See also:“#address -cells 7, “reg ", “#size -cells

”

13 reg ” S
Standardgroperty nameo define the package’s registers.

prop-encoded-array
Arbitrary number of §hys-addr sizepairs.
phys-addris a phys.lo... phys.h) list, encoded witlencode-phys
sizeis a list of integers, each encoded vétitode-int

Specifies the range of addressable regions on the devicerddhe property represents the physical address, within its
parent node’s address space, of the device associated with the node and also the amount of physical address space
consumed by that device. In general, tregg*” property of a node can contain sevegrhys.lo... phys.hi size

specifications representing several disjoint ranges of physical address space.

The number of integers in easizeentry is determined by the value of thtsize-cells " property in the parent node.
If the parent node has no such property, the value is one. The interpretatiosipé¢ndries is dependent on the parent
bus.

phys.lo .. phys.hiis typically obtained by modifying the values obtained frograddress my-space , perhaps by
adding the offset of device registers to some component of the base address obtaingddduiress my-space .

Used aqassuming #size-cells " is one)

my-address 8000 + my-space encode-phys
40 encode-int encode+
my-address c000 + my-space encode-phys encode+
8 encode-int encode+
"reg" property
NOTE—The first specifiegphys-addmecomes the defauinit addresdor subsequent instances of this package. This
value will be used when a precise specification of this card is required (i.e., device tree specifications). For example, in a
device-path of: /.../.../XYZ,devhame@3,2000, the “3,2000” is the text representation of thleylsb phys.hi
specification in this package’'seg " property declaration.
See also:“#address-cells ", my-unit , property ,reg , “#size-cells

”

registers (-)
Display saved register values.

Display the register values that were in effect when the program state was saved (i.e., when the program was suspended).
The exact set of registers displayed, and the format, is ISA-dependent.

177

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

“relative-addressing " S
Standardgroperty nameo indicate firmware addressing style.
prop-encoded-array:
None; presence or absence of the property conveys the information.

The presence of this property indicates that each device node addetstivis i.e., local to the address space defined by

the node’s parent. The absence of the property indicates that device node addresses are absolute addresses within the
system-wide address space.

This property shall be present within #tepenprom node (because this specification requires relative device node
addresses).

release (addr...len ... --) M
Free (release) addressable resource.

Freeden ...(whose format depends on the package) bytes of the addressable resource managed by the package containing

this method, beginning at the addrasislr ...(whose format depends on the package), making it available for subsequent

use.
See also:claim , alloc-mem , “available ", free-mem
remove-abort (-) M

Cease polling for a keyboard abort sequence.

Instruct the device driver to cease periodic polling for a keyboard abort sequence. Executed when the console input device

is changed from this device to another.

repeat (C: orig-sys dest-sys --) AT
(--)
Mark end of eegin ..while ..repeat loop. Jump tdegin .
Compilation: (C: orig-sys dest-sys --)

Perform the compilation semantics of ANS FARBPEAT Then, if the current definition is temporary and the depth of
the control flow stack is the same as its depth when the temporary current definition was initiated, perform the
compilation semantics of and execute the temporary current definition.

Run-time: (--)
Same as ANS Forth.

Tokenizer equivalent: bbranch -offset b(>resolve)

ANS Forth note: Also works outside of a definition.

reset (package method) (--) M
Put this device into a quiescent state.
The definition of “quiescent” is device-specific. This method is used primarily for permanently installed devices (which
are therefore not probed) that do not automatically assume a quiescent state after a system reset.

Thereset method is not invoked by any standard Open Firmware functions, but may be explicitly executed for
particular “problem” devices in particular Open Firmware implementations.

reset-all (-)
Reset the machine as if a power-on reset had occurred.

This command is used to initiate a system power-on reset, thus re-initializing the hardware state and Open Firmware’s
data structures as if a power-on reset had occurred.

178

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

reset-screen (--) F 0x158
Perform frame-buffer device initialization.
reset-screen is one of thelefer words of the display device interface. The terminal emulator package executes
reset-screen when it has processed a character sequence that calls for resetting the display device to its initial state.
Theopen method that is automatically createdisynstall executeseset-screen after executing

erase-screen as part of the process of initializing tteeminal emulatoris-install automatically creates a
“restore " method that executegset-screen

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set tldefer word to a function with the following behavior:

Put the display device into a state in which display output is visible (e.g., enable video).
See also:to , fb8-install

restore () M
Restore device to useable state after unexpected reset.
On some systems, unexpected system errors result in a bus reset that turns off some devices, but does not necessarily
destroy the machine state necessary for debugging the error. In such systems, the system-dependent firmware handler for

that reset condition may execute thetore methods of the console input and output devices, in order to re-enable
those devices for user interaction and subsequent debugging.

NOTE—is-install automatically creates an implementation of this method whose behavior is to execute the
reset-screen defer word.

resume (-)
Exit from a “subordinate interpreter” back to the stepper.

This command is used after thekeystroke was used with the stepper.

return (--)
Execute until return from this subroutine.

ring-bell (-) M
Ring the bell.

Cause the device to emit a brief audible sound (beep).
See also:blink-screen

rl! (FCode function) (quad gaddr --) F 0x235
Store a quadlet to device registegatdr.

Data is stored with a single access operation and flushes any intervening write buffers, so that the data reaches its final
destination before the next FCode function is executed.

Register is stored with identical bit ordering as the input stack item.

rl! (user interface) (quad gaddr --)
Store a quadlet to device registegatdr.
Compilation: (--)

Perform the equivalent of the phrase:

h# 235 get-token if execute else compile, then
Interpretation: (quad gaddr --)
Perform the equivalent of the phrase:

h# 235 get-token drop execute

NOTE—A bus device can substitute (ses-token) a bus-specific implementation df for use by its children.
This is sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The
given user interface semanticsribf ensure that such substitutions are visible at the user interface level.

179

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

rl@ (FCode function) (gaddr -- quad) F 0x234
Fetch a quadlet from device registegatidr.

Data is read with a single access operation.
Result has identical bit ordering as the original register data.

rl@ (user interface) (gaddr -- quad)
Fetch a quadlet from device registegatldr.
Compilation: (-)

Perform the equivalent of the phrase:

h# 234 get-token if execute else compile, then
Interpretation: (gaddr -- quad)
Perform the equivalent of the phrase:

h# 234 get-token drop execute

NOTE—A bus device can substitute (ses-token) a bus-specific implementation @ for use by its children.
This is sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The
given user interface semanticsri@® ensure that such substitutions are visible at the user interface level.

roll (xu...x1x0u--xu-1...x1x0xu) AF Ox4F
Rotateu+1 stack items as shown.

For example:

1 roll <=> swap
2 roll <=> rot

rot (x1x2x3--x2x3x1) AF Ox4A
Rotate top three stack items as shown.

-rot (x1x2x3--x3x1x2) F 0x4B
Rotate top three stack items as shown.

2rot (X1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2) AF 0x56
Rotate three pairs of stack items as shown.

rshift (xLlu--x2) AF 0x28
Shift x1 right byu bit-places. Zero-fill high bits.

rw! (FCode function) (w waddr --) F 0x233
Store a doublew to device register ataddr.

Data is stored with a single access operation and flushes any intervening write buffers, so that the data reaches its final
destination before the next FCode function is executed.

Register is stored with identical bit ordering as the input stack item.

180

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
rw! (user interface) (w waddr --)

Store a doublew to device register ataddr.

Compilation: (-)

Perform the equivalent of the phrase:

h# 233 get-token if execute else compile, then
Interpretation: (w waddr --)
Perform the equivalent of the phrase:

h# 233 get-token drop execute

NOTE—A bus device can substitute (ses-token) a bus-specific implementation df! for use by its children.
This is sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The
given user interface semanticsrbf ensure that such substitutions are visible at the user interface level.

rw@ (FCode function) (waddr -- w) F 0x232

Fetch a doublew from device register ataddr.

Data is read with a single access operation.
Result has identical bit ordering as the original register data.

rw@ (user interface) (waddr --w)

#s

Fetch a doublew from device register avaddr.
Compilation: (-)
Perform the equivalent of the phrase:

h# 232 get-token if execute else compile, then
Interpretation: (waddr --w)
Perform the equivalent of the phrase:

h# 232 get-token drop execute

NOTE—A bus device can substitute (ses-token) a bus-specific implementation af@for use by its children.
This is sometimes necessary to correctly implement its semantics with respect to bit-order and write-buffer flushing. The
given user interface semanticsraf@ensure that such substitutions are visible at the user interface level.

([text<">] -- text-str text-len) AT
Gather the immediately following string.

The description 08" in the ANS Forth “File-Access” wordset applies to this standard. At least two temporary buffers,
used alternately, shall be provided.

Usage restriction: Since an implementation is only required to provide two temporary buffers, a standard program cannot
depend on the system’s ability to simultaneously maintain more than two distinct interpreted strings. Compiled strings do
not have this limitation, since they are not stored in the temporary buffers.

Tokenizer equivalent: b(") len-byte xx-byte xx-byte ... xx-byte

(n--) T
Display a signed number, with a trailing space.

Display the number according to the current valugsise , with a leading minus sign if necessary.
Tokenizer equivalent: (.) type space

(ud--00) AF 0xC8
Convert remaining digits in pictured numeric output.

(- 20)) AF Ox9F
Display entire stack contents, unchanged.

181

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

sbus-intr>cpu (sbus-intr# -- cpu-intr#) F 0x131
Converts SBus interrupt level to CPU interrupt level.

For systems with one built-in SBus, return the CPU interrupt wuelintr# corresponding to the SBus interrupt level
sbus-intr#for that built-in SBus. For other systems, retopn-intr#equal tosbus-intr#

sbus-intr>cpu is used by some existing FCode drivers for devices that interrupt on more than one SBus interrupt
level, to compute the value of thiatr " property. That property has been replaced by ihterrupts " property,

which specifies the SBus interrupt level directly, without requiring that it be converted to the corresponding CPU interrupt
level. It is not always possible for an SBus node to know the mapping from the SBus level to the CPU level, especially in
cases where the SBus node results from a plug-in bridge from some other bus to SBus.

This FCode function should be used only by those FCode programs that require compatibility with older SBus systems. It
should not be used by FCode programs for non-SBus devices. The specification of this property is included here, rather
than in an SBus-specific supplement, because of the possibility that, even on systems that nominally do not support SBus,
SBus devices might be used via a bus-to-bus bridge.

screen-#columns (--n) N
Maximum number of columns on console output device.
Standard display packages use this value to determine the width in characters of their text region. If the device is
incapable of displaying that many columns, the device restrictions prevail.
Configuration variable typenteger Suggested default valug0.

screen-height (-- height) F 0x163
value |, return total height of the display in pixels.
screen-height is an internal value used by thbX ” and “fb8 ” frame-buffer support packagdbl-install
andfb8-install set it to the value of thelreightargument.
A Standard FCode program shall not directly alter its value.
NOTE—This function is included for historical compatibility. There is little reason for an FCode program to use it.

screen-#rows (--n) N
Maximum number of rows on console output device.
Standard display packages use this value to determine the height in text lines of their text region. If the device is incapable
of displaying that many rows, the device restrictions prevail.
Configuration variable typenteger Suggested default valu24.

screen-width (-- width) F 0x164
value , return total width of the display in pixels.
screen-width is an internal value used by thdX " and “fb8 ” frame-buffer support packagdbl-install and
fb8-install set it to theiwidth argument.

A Standard FCode program shall not directly alter its value.
NOTE—This function is included for historical compatibility. There is little reason for an FCode program to use it.

s>d (nl1--d1) A
Convert a number to a double number.

security-#badlogins (--n) N
Contain total count of invalid security access attempts.
This counter is incremented by one, whenever a bad password is entered when attempting to enter the command
interpreter whilesecurity-mode is set (to eithecommandmode offull mode).
The value irsecurity-#badlogins is not affected by theet-default or set-defaults commands.
Configuration variable typenteger There is no suggested default value.

182

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

security-mode (--n) N
Contain level of security access protection.

Security mode requires user knowledge of a password to allow use of most commands through the command interpreter.
Used as:ok setenv security-mode full
The following keywords denote the security levels:

none No security, no password required.

command Requires password entry to execute any command excejui,fooot (default device and default file),
or automatic boot after system power-orboot call.

full Requires password entry to execute any command exceq fmymmand. Automatic booting is disabled,
machine will not automatically reboot after a power failure.

The value okecurity-mode is not affected by theet-default or set-defaults commands.
Configuration variable typesecurity-modeThere is no suggested default value.

NOTE—It is not possible to determine the level of security protection from within a program, as the retlu@ed by
this command cannot be related unambiguously to the security level keywords.

security-password (-- password-str password-len) N
Contain security password text string.
The value okecurity-password shall not be displayed whemintenv is executed. The value of
security-password is not affected by theet-default or set-defaults commands. If the value is set to a

value that contains fewer characters than its prior value, the remaining characters of the prior value should be set to zero to
prevent accidental discovery of a prior password.

Configuration variable typestring[8]. There is no suggested default value.

NOTE—The value okecurity-password is normally set with thpassword command, althougbetenv can
also be used.

see ("old-name< >" --) A
Decompile the Forth commarmit-name

Used as: ok see old-name

(see) (xt--)
Decompile the Forth command whose execution tokgh is

Used as:['] old-name (see)

seek (pos.lo pos.hi -- status) M
Set device position for neréad orwrite

Set the device position at which the nesdad orwrite will take place. The position is specified by a pair of numbers
pos.lo pos.hiwhose interpretation depends on the device type. Return —1 if the operation fails and either zero or one if it
succeeds.

NOTE—The return value one (1) is meant as a concession to existing practice. Programs thategde thethod
should treat either of the status values 0 or 1 as an indication of success.

selftest (-- 0] error-code) M
Perform self-test for this device.

Return 0 if successful, a device-specific nonzero error number if an error is detected. The complexity of this test will
typically be much greater than that of the test performed when is called.

This method is typically invoked by the user commateds or test-all , Viaexecute-device-method

Consequently, the packag@pen method has not necessarily been executed bgdtitest is invoked.
(execute-device-method does not calbpen, but it is possible for the device to have already been previously

open ed.)selftest should leave the device in a state similar to that besfeifeest was executed. Therefore,

selftest is responsible for establishing any device state necessary to perform its function prior to starting the tests and
for releasing any resources that were allocated during the process after completing the tests.

The extent of the testing performeddsiftest may depend on the value returneddimgnostic-mode? ; if so,
more extensive testing shall be performed wiiegnostic-mode? returntrue .

183

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

selftest-#megs (--n) N

Number of megabytes of memory to test.

Theselftest routine of the “memory” node (the node whdsandleis given by the value dEhosen ’s “memory”

property) is a memory test. In most systems that memory test is automatically executed after the secondary diagnostics.
(Some smaller portion of memory is usually tested by POST, as sedftgst-#megs controls the extent of memory
selftest . If diagnostic-mode? is true, the system may ignore the valusaiftest-#megs

Configuration variable typenteger Suggested default valuk:

“serial " S

Byte-oriented device type such as a serial port.

Standard string value of thelévice_type " property for serial devices.
A standard package with thidévice_type " property value shall implement the following methods.
open, close ,read ,write , install-abort , remove-abort

A standard package with thidévice_type " property value should implement the following method if an unexpected
system reset can cause the display to become invisible (e.g., the video is turned off) and the display can be restored to
visibility without performing memory mapping or memory allocation operations:

restore
A standard package with thidévice_type " property value should implement the following method if the device has
an audible annunciator that requires some action other than sending an ASCII BEL character in order to make it emit a
beep:

ring-bell
A standard package with thidévice_type " property value may implement additional device-specific methods.
Additional requirements for threead method:

Receive a number of bytes equal to the minimuhermand the number of bytes available for immediate reception,
from the device into memory startingaatdr. Returnactual the number of bytes read, or -2 if no bytes are currently
available from that device.

See alsocharacter-set

set-args (arg-str arg-len unit-str unit-len --) F Ox23F

Set address and arguments of new device node.

unit-stringis a text string representation of a physical address within the address space of the parent device. Translate
unit-stringto the equivalent numerical representation by executing the parent instalem@dé-unit " method. Set

the current instancefgrobe-addresgi.e., the values returned byy-address andmy-space) to that numerical
representation.

Copy the stringarg-stringto instance-specific storage, and arrangerfgrargs to return the address and length of that
copy when executed from the current instance.

NOTE—set-args is typically used just aftarew-device .new-device creates and selects a new device node,
andset-args sets itgrobe-addresaind arguments. Subsequently, the device node’s properties and methods are
created by interpreting an FCode program Wwitte-load or by interpreting Forth source code.

NOTE—The empty string (any string of zero length) is commonly used as the arguments for a new device node, for
example:0 0 " 3,2000" set-args

set-default ("param-name<eol>" --)

Setconfiguration variableo default value.

Used as: ok set-default nv-name <eol>

Someconfiguration variable are unaffected bset-default , as noted in individuadonfiguration variablecommand
descriptions.

set-defaults (--)

184

Reset mostonfiguration variabls to their default values.

Someconfiguration variable are unaffected get-defaults , as noted in individualonfiguration variable
command descriptions.

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

setenv ("nv-param< >new-value<eol>" --)
Set theconfiguration variablenv-paramto the indicated value.
Skip leading space delimiters. Parseparamdelimited by a space. Pansew-valueas the remainder of the input buffer
minus leading and trailing white space.
If new-valueis the empty string, display an error message and return.
Otherwise, perform the equivalent®getenv , with string arguments denotimgw-valueandnew-value
See Also: $setenv , 7.4.4.1.
Used as:

ok setenv auto-boot? true <eol>
ok setenv selftest-#megs 55 <eol>
ok setenv oem-banner This.Is also22 more-text4 <eol>

The stored string in this case iBhis.Is also22 more-text4 "

$setenv (data-addr data-len name-str name-len --)
Set the configuration variable name string to new value.
data-addr,lenis a string of characters or bytes representing the new value for the configuration variable whose name is
given byname-str,leninterpret that new value according to the input text representation of that configuration variable’s
configuration variable data type. If the given value string is not suitable for that data type, display an error message.

Otherwise, set the configuration variable to that new value, truncating it to fit the available space if necessary, and then
display the output text representation of that configuration variable’s value.

See Also:setenv , 7.4.4.1.
Used as:" new-value" " nv-name" $setenv

set-font (‘addr width height advance min-char #glyphs --) F 0x16B
Set the current font as specified.

The font is used by thédl ” and “fb8 ” frame-buffer support packages.

Setchar-height to height char-width towidth, andfontbytes to advance Configure the subsequent behavior
of >font to access the font described by the arguments, according to the font data structure specified below.

The font is a fixed width monochrome character font. The glyphs in the font are represented as follows: A glyph is
represented by a series of horizontal scan line images, from top to bottom. The sets of scan line images representing the
glyphs for successive characters are placed one after the other in character order.

addris the address of the fontidthis the glyph width, in pixeldieightis the glyph height, in scan lines.

advances the distance in bytes between the successive scan lines of a glyph. Typicallyyitlik ¢({(L5)/16) * 2), i.e.,
the storage area for a scan line is padded out to a doublet boundary.

min-charis the character number of the first glyph in the font.
#glyphsis the number of glyphs represented in the font.

The number of scan lines images in each glyph is one less than the height. The missing scan line image is assumed to
contain all zeroes. The top scan line image for each glyph must contain all zeroes.

set-token (xtimmediate? fcode# --) F 0xDB
Assign FCode number to existing function.
Assign the FCode numb#rode#to the FCode function whose execution tokext,isvith compilation behavior specified
by immediate?as follows. [fimmediateds zero, then the FCode evaluator will execute the function’'s execution semantics
if it encounters that FCode number while in interpretation state, or append those execution semantics to the current

definition if it encounters that FCode number while in compilation statermédiateds nonzero, the FCode evaluator
will execute the functions’s FCode evaluation semantics anytime it encounters that FCode number.

show-devs ("{device-specifier}<eol>" --)
Show all devices beneath the indicated node.
Skip leading space delimiters. Padsvice-specifiedelimited by a space. Discard the remainder of the command line.
Show the full device path for each device in the subtree of the device tree underneath the specified node. The search

process by which the specified node is located is as defink8, insing the rules given fdind-device . If device-
specifieris the empty string (i.e., there is nothing on the command line follestiogy-devs), show all system devices.

Used as: ok show-devs device-alias <eol>

185

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

showstack (--)
Turn on automatic stack display.
Display entire stack, with a format similar to tlse command, just before eaok prompt.
This feature is be turned off with theshowstack command. The system defaulnisshowstack
Typical implementation: [1] .s is status
See: noshowstack

$sift (text-addr text-len --)
Display all command-names containitegt-string

Search the current vocabulary and display the names of all commands which include the s@eesfiddgas part of the
command-name. Upper and lowercase distinctions are ignored. This command is useful for finding all commands of a
particular “type”, or for finding any command where the name is only partially known.

Used as:" ing" $sift

sifting ("text< >" --)
Display all command-names containitegt

Used as: ok sifting text<space>
See: $sift for more information.

sign (n--) AF 0x98
If n< 0, insert “-” in pictured numeric output.

“#size-cells " S
Standardgroperty nameo define the package’s addreszeformat.

prop-encoded-array Number encoded as wiémcode-int

This property applies to bus nodes. The property value specifies the number of cells that that are used to encode the size
field of a child’'s ‘reg " format property. A missing#size-cells " property signifies the default value of one. Plug-in
devices shall use the value specified for that bus, and if unspecified, shall use the default value of one.

For a given bus, the value of this property should be the same on all machines for which that bus could possibly be used,
even if those machines do not all have the same cell size. Consequently, the value of the property is determined in part by
the smallest cell size among all the machines to which the bus can apply.

sm/rem (dn--rem quot) A
Divide d by n, symmetric division.

source (--addrlen) A
Return the location and size of the input buffer.

space (--) AT
Display a single space.
Tokenizer equivalent: bl emit

spaces (ent--) AT
Displaycnt spaces.

Tokenizer equivalent: 0 max 0 ?do space loop

span (-- a-addr) AF 0x88
variable containing number of characters receivectkyect .

186

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

startO (--) F OxFO
Begin program witispread0. Followed byFCode-header.
Set thespreadvalue to zero, thus causing the FCode evaluator to read all bytes of the current FCode program from the

same address. Set the sizé-Glode-offsetsto 16 bits. Read aRCode-headefrom the current FCode program and either
discard it or use it to verify the integrity of the current FCode program in an implementation-dependent manner.

FCODE ONLY (the first byte of an FCode program)

startl (--) F OxF1
Begin program witlspreadl. Followed byFCode-header.
Set thespreadvalue to one, thus causing the FCode evaluator to read bytes of the current FCode program from locations

one address unit apart. Set the sizE@bde-offset$o 16 bits. Read aRCode-headefrom the current FCode program
and either discard it or use it to verify the integrity of the current FCode program in an implementation-dependent manner.

FCODE ONLY (the first byte of an FCode program)

start2 (--) F OxF2
Begin program witlspread2. Followed byFCode-header.
Set thespreadvalue to two, thus causing the FCode evaluator to read bytes of the current FCode program from locations

two address unit apart. Set the siz&6bde-offsetso 16 bits. Read aRCode-headefrom the current FCode program
and either discard it or use it to verify the integrity of the current FCode program in an implementation-dependent manner.

FCODE ONLY (the first byte of an FCode program)

start4 (--) F OxF3
Begin program witlspread4. Followed byFCode-header.
Set thespreadvalue to four, thus causing the FCode evaluator to read bytes of the current FCode program from locations

four address unit apart. Set the siz&Gbde-offset$o 16 bits. Read alRCode-headefrom the current FCode program
and either discard it or use it to verify the integrity of the current FCode program in an implementation-dependent manner.

FCODE ONLY (the first byte of an FCode program)

state (--a-addr) AF 0xDC
variable containingtrue if in compilation state.

state-valid (--a-addr)
variable containingtrue if saved-program-states valid.
Containgtrue if saved-program-statis valid,false otherwise. Set torue by theinit-program command and
by actions that result in the saving of program state.
saved-program-statsust be valid in order for execution wijlo to perform properly.

status (-)
defer word that can be used to modify the user interface prompt.
This is adefer word, initially vectored tamoop, which can be used to display whatever additional information the user
wishes to see with each prompt.
Example:
The following example illustrates a way to show the current numeric base, in parentheses, on the prompt line.

. showbase (--) ."("base @ .d.")";
['1 showbase to status

To return to the default condition use the following:
[1 noop to status

187

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

“status " S
Standardgroperty nameo indicate the operational status of this device.

prop-encoded-array
Text string, encoded wittncode-string

If this property is present, the value is a string indicating the status of the device, as follows:
“okay”

The device is believed to be operational.
“disabled”

The device represented by this node is not operational, but it might become operational in the future (e.g., an external
switch is turned off, or something isn’t plugged in.)

“fail”

The device represented by this node is not operational because a fault has been detected, and it is unlikely that the
device will become operational without repair. No additional failure details are available.

“fail-xxx”

The device represented by this node is not operational because a fault has been detected, and it is unlikely that the
device will become operational without repair. “xxx” is additional human-readable information about the particular
fault condition that was detected.

The absence of this property means that the operational status is unknown or okay.

stdin (-- a-addr)
variable containing thehandleof the console input device.

“stdin " S
Standardgroperty nameontaining thehandleof the console input device.

prop-encoded-array:
Integer, encoded wittncode-int

This property appears in tihehosen node.

stdout (--a-addr)
variable containing theéhandleof the console output device.

“stdout " S
Standardgroperty nameontaining thehandleof the console output device.

prop-encoded-array:
Integer, encoded wittncode-int

This property appears in tihehosen node.

step (-)

Executes a single machine-code instruction.

Resume client program execution as vgith but only execute one instruction. The effect is as if breakpoints were
established at the possible successors to that instruction and then automatically removed when the breakpoint is handled.

step (--)
Action performed when a singétep occurs.

Execute this command whenever a single step occurs. The default behavioinstithetion command.
.step is adefer command, alterable with the command. For example, to display registers at every single step.
Use as:[] .registers to .step

188

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

stepping (--)
Set “step mode” (default) for Forth source-level debugging.
This mode allows interactive step-by-step execution of the command being debugged. “Step mode” is the default.

While in “step mode”, before the execution of each command called by the debugged command, prompt the user for one of
a number of keystrokes. See 7.5.3.4 for a list of these keystrokes.

See: debug for more information.

steps (n--)
Executestep ntimes.

struct (-0) T
Start astruct ... field definition.
Initialize a structure definition, for use witield commands. Leave a zero on the stack to define the initial offset.
Tokenizer equivalent: O
See: field for more information.

suppress-banner (--)
Abbreviate system start-up sequence insitrépt.

If executed within thecript, suppress automatic execution of the following Open Firmware start-up sequence:

probe-all install-console banner

suppress-banner is useful for creating custom banners with commands iedfipt, as it suppresses the default
system banner.

See also:banner .

suspend-fcode (--) F 0x215
Pause FCode evaluation if desired; can resume later.

Advise the FCode evaluator that the device identification properties factive packagéave been declared and that it
is safe to postpone the evaluation of the remainder of the package.

If the FCode evaluator chooses to postpone (suspend) evaluation, it saves the state of the evaluation process necessary for
later resumption of the process.

Usage restriction: “name”, “reg ” and “device_type ” properties must exist in thective packagéefore this
command is executed.

This feature is intended to save memory space and reduce the system start-up time by preventing the compilation of FCode
drivers that are not actually used.

swap (x1x2--x2x1) AF 0x49
Exchange top two stack items.

2swap (X1 x2 x3 x4 -- x3 x4 X1 x2) AF 0x55
Exchange top two pairs of stack items.

sym ("name<>"--n)
Return value of client program symbol “name”.

Parsenamedelimited by a space. $fym>value returnsfalse , perform the function adbort . Otherwise, return the
symbol valuen corresponding to that symbol name.

189

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

sym>value (‘addr len -- addr len false | n true)
defer word to resolve symbol names.
Thisdefer command is executed when the symbolic debugger needs to translate a symbol name into its corresponding

value. Ifsym>value is present, the Forth interpreter attempts to perform such translation if a word is neither found in
the normal dictionary search nor recognized as number. The translation is also attersptad by

If a symbol whose name matches the string giveaduly lenis definedsym>value returns the corresponding symbol
value andrue . Otherwisesym>value returns itsaddr lenarguments anthlse

The default action fosym>value , when no symbol table is present, is the actidialse . A program can provide a
symbol table and uge to install a command to search that symbol tablesyio>value .

sync (--)
Flush system file buffers, after a program interrupt.
Equivalent to: callback sync <eol>

The suggested callback behavior of sgac command is to flush system file buffers. This is often used after a client
program has been forcibly interrupted by aborting to the Open Firmware.

test ("device-specifier<eol>" --)
Invoke theselftest routine for the specified device.
If the device node specified lojevice-specifiehas aselftest method, invoke it witlexecute-device-method
Otherwise display an error message.
NOTE—The self-test routine that is executed might display device-specific error messages.
Used as: ok test device-alias <eol>

test-all ("{device-specifier}<eol>" --)
Invokeselftest routines at and below specified node.
For each node in the subtree of the device tree at and below the specified node, or the root node if no node is specified: If
the node has selftest method, invoke it witlexecute-device-method
NOTE—Theselftest routines that are executed might display device-specific error messages.
The system may choose not to test certain active devices that it believes are “unsafe” to test while active.
Used as: ok test-all device-alias <eol>

then (C: orig-sys --) AT
(--)
Terminate anf statement.
Compilation: (C: orig-sys --)
Perform the compilation semantics of ANS FOFtHEN Then, if the current definition is temporary and the depth of

the control flow stack is the same as its depth when the temporary current definition was initiated, perform the
compilation semantics of and execute the temporary current definition.

Run-time: (-)
Same as ANS Forth.
ANS Forth note: Also works outside of a definition.

throw (... error-code -- ??7? error-code | ...) AF 0x218
Transfer back teatch routine iferror-codeis nonzero.

The value oimy-self shall be restored from the exception frame.
ANS Forth note: also restoremy-self

till (addr--)
Execute until the given address.

Equivalent to: +bp go

190

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994

to

(param [old-name< >] --) AT
Changevalue ordefer or machine register contents.

Tokenizer equivalent: b(to) old-FCode#

ANS Forth note: to can be used with other word typeefer words and machine register names) in addition to those
specified in ANS Forth.

Used as:55 to #lines

toggle-cursor (--) F 0x159

defer , toggle the state of the text cursor.

toggle-cursor is one of thelefer words of the display device interface. The terminal emulator package executes
toggle-cursor when it is about to process a character sequence that might involve screen drawing activity, and
executes it again after it has finished processing that sequence. The first execution removes the cursor from the screen so
that any screen drawing will not interfere with the cursor, and the second execution restores the cursor, possibly at a new
position, after the drawing activity related to that character sequence is firtisi)gie-cursor is also called once

during theterminal emulatotinitialization sequence.

Any standard package that uses the terminal emulator package shall, as part of the process of opening the terminal
emulator package, set thdsfer word to a function with the following behavior:

If the text cursor is on, turn it off. If the text cursor is off, turn it on. (On a bit-mapped display, a typical
implementation of this function inverts the pixels of the character cell to the right of the current cursor position.)

If the display device hardware has internal state (for example color map settings) that might have been changed by
external software without firmware’s knowledge, that hardware state should be re-established to the state that the
firmware device driver requires when the cursor is toggled to the off state (which indicates that firmware drawing
operations are about to begin). This situation can occur, for example, when an operating system is using a display
device, but that operating system uses firmware text output services from time to time, e.g., for critical warning
messages.

See also:to , fb8-install

tracing (--)

Set “trace mode” for Forth source-level debugging.

This mode causes execution of the word being debugged to be traced, showing the name and stack contents for each
command called by the debugged command.

Continue tracing untstepping is executed or a system reset takes place.

See: debug for more information.

-trailing (strlenl -- strlen2) A

Remove trailing spaces from string.

translate (virt -- false | phys.lo ... phys.hi mode true) M

true

Translate virtual address to physical address.

If a valid virtual to physical translation exists for the virtual addu@ssreturn the physical addregbys.lo ... phys.hthe
translation modenode andtrue. Otherwise returfalse The physical address format is the same as that of the “memaory
node (the node whodleandleis given by the value dEhosen ’s “memory” property). The interpretation efiodeis
implementation dependent.

(--true) AT
Return the valugrue (negative one).

Tokenizer equivalent: -1

tuck (x1x2--x2x1x2) AF 0x4C

Copy top stack item underneath the second stack item.

type (text-str text-len --) AF 0x90

Displaytext-lencharacters beginning at addréss-str.

191

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

u# (ul--u2) F 0x99
Convert a digit in pictured numeric output conversion.

Divide ul by base . Leave the quotient on the stacku&sConvert the remainder digit to a printable character
representation and add it to the text string withhiblel command.

See:(.) and(u.) forexamples of use.

u#> (u--strlen) F 0x97
End pictured numeric output conversion.

Leave the text string on the stack, suitable for use tyfié .
See: () and(u.) forexamples of use.

u#s (ul--u2) F O0x9A
Convert remaining digits in pictured numeric output.

Repeat the# operation until the quotient is zero.
See:(.) and(u.) forexamples of use.

u* (ul u2 -- uprod)
Multiply ul by u?2 yieldinguprod all unsigned.

u. (u--) AF 0x9B
Display an unsigned number, with a trailing space.

u< (ul u2 -- unsigned-less?) AF 0x40
Returntrue if ulis less tham2, unsigned.

u<= (ul u2 -- unsigned-less-or-equal?) F O0x3F
Returntrue if ulless or equal to2, unsigned.

u> (ul u2 -- unsigned-greater?) AF 0x3E
Returntrue if ulis greater than2, unsigned.

u>= (ul u2 -- unsigned-greater-or-equal?) F 0x41
Returntrue if ul greater or equal t02, unsigned.

(u) (u--strlen) T
Convert an unsigned number into a text string.

Perform the conversion according to the valuedse .
Tokenizer equivalent: <# u#s u#>

u2/ (x1--x2) F 0x58
Shift x1 right by one bit-place. Zero-fill high bit.

um* (ul u2 -- ud.prod) AF 0xD4
Unsigned multiply with unsigned double-number product.

um/mod (ud u -- urem uquot) AF 0xD5
Divide ud by u.

192

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

u/mod (ul u2 - urem uquot) F 0x2B
Divide ul by u2, both unsigned.

unaligned-! (quad addr --)
Store quadlet taddr, any alignment is allowed.

unaligned-1@ (addr -- quad)
Fetch quadlet fromaddr, any alignment is allowed.

unaligned-w! (waddr --)
Store doubletv to addr, any alignment is allowed.

unaligned-w@ (addr--w)
Fetch doubletv from addr, any alignment is allowed.

unloop (--) (Risys--) AF 0x89
Discard loop control parameters.

ANS Forth note: Also works outside of a definition.

unmap (virtlen...--) M
Invalidate existing address translation.
Invalidates any existing address translation for the region of virtual address space begwiniragndtcontinuing foten

... (whose format depends on the package) bytamap does not free either the virtual address space (as with the
release standard method) or any physical memory that was associatednivith

If the operation fails for any reason, usi@®w to signal the error.

until (C: dest-sys --) AT
(done? --)
End abegin ... until loop. Exit loop if flag is nonzero.
Compilation: (C: dest-sys --)

Perform the compilation semantics of ANS FA®NTIL. Then, if the current definition is temporary and the depth
of the control flow stack is the same as its depth when the temporary current definition was initiated, perform the
compilation semantics of and execute the temporary current definition.

Run-time: (done?--)
Same as ANS Forth.

Tokenizer equivalent: b?branch -offset

ANS Forth note: Also works outside of a definition.

upc (charl -- char2) F 0x81
Convert ASClicharlto uppercase.
Convert input values between 0x61 and Ox7A (ASCII a-z) to 0x41 through Ox5A (ASCII A-Z). All other input values are
unchanged.

u.r (usize --) AF 0x9C
Display an unsigned number, right-justified.

use-nvramrc? (-- enabled?) N
If true , thescriptis evaluated at system start-up.

If false , thescriptis not evaluated.
Configuration variable typ@oolean Suggested default valuise

193

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

user-abort (er--) (Ri =) F 0x219
After alarm routine is finished, abort program execution.

Used within an alarm routine to signify that the user has typed an abort sequence. When the alarm routine finishes, instead
of returning to the program that was interrupted by the execution of the alarm routine, enter the command interpreter by
calling theabort command.

value (E:--x) AT
(x "new-name< >" --)
Create a named variable, change wdth
Tokenizer equivalent: new-token |named-token |external-token b(value)
ANS Forth/tokenizer difference: In FCode sourcejalue cannot appear inside a colon definition.

value>sym (nl--nlfalse | n2 addr len true)
Defer word to resolve symbol values.

Thisdefer command is executed when the symbolic debugger needs to translate a symbol value into its corresponding
name. Ifvalue>sym is present, the disassembler attempts to perform such translation to display symbolic
representations of the addresses that it displays. The translation is also attemguded.by

If the symbol table contains a symbol whose value is sufficiently close to, but not greater than, thg value>sym
returns the stringddr lenrepresenting the name of that symbol, the non-negative diffen@imetween the symbol value
andnl, andtrue . Otherwiseyalue>sym returns itsnl argument andalse

The default action fovalue>sym , when no symbol table is present, is the actidialse . A program can provide a
symbol table and uge to install a command to search that symbol tableviatoe>sym .

variable (E: -- a-addr) AT
("new-name< >" --)
Create a named variableew-nameeturns address-addr.

Tokenizer equivalent: new-token |named-token |external-token b(variable)
ANS Forth/tokenizer difference: In FCode sourcejariable cannot appear inside a colon definition.

versionl (--) F OxFD
Begin program witlspreadl. Followed byFCode-header.

Set thespreadvalue to one, thus causing the FCode Evaluator to read bytes of the current FCode program from locations
one address unit apart. Set the sizE@bde-offset$o 8 bits. Read aRCode-headefrom the current FCode program and
either discard it or use it to verify the integrity of the current FCode program in an implementation-dependent manner.

FCODE ONLY

w! (w waddr --) F 0x74
Store doubletv to waddr.

See: rw!

W, (w--) F 0xD1
Compile a doubletvinto the dictionary (doublet-aligned).
Allocate two bytes (witkallot) at the current top of the dictionary and store the walirgo that space. The dictionary
pointer must have been doublet-aligned.

w@ (waddr -- w) F Ox6F
Fetch doubletv from waddr.

See: rw@

fw (--n) F 0x5B
The number of address units to a doublet: typically, two.

194

CORE REQUIREMENTS AND PRACTICES

IEEE

Std 1275-1994

fw* (nul--nu2) F 0x67
Multiply nulby the value ofw .

<w@ (waddr --n) F 0x70
Fetch doublet fromvaddr, sign-extended.

wat (addrl index -- addr2) F Ox5F
Incrementaddrl by indextimes the value ofv .

wal+ (addrl -- addr2) F 0x63
Incrementaddrl by the value ofw .

whbflip (wl--w2) F 0x80
Swap the bytes within a doublet.
The high bits of the input doublet must be zero.

whbflips (waddr len --) F 0x236
Swap the bytes within each doublet in the given region.
The region begins ataddrand spanten bytes. The behavior is undefinedah is not a multiple ofw .

whbsplit (w--bl.lo b2.hi) F OxAF
Split a doubletv into two bytes.
The high bits of each of the two bytes are zero.

while (C: dest-sys -- orig-sys dest-sys) AT

(continue? --)

Mark first clause of &egin ..while ..repeat loop.
Tokenizer equivalent: b?branch +offset
ANS Forth note: Also works outside of a definition.

window-left (-- border-width) F 0x166

value , return window left border in pixels.

window-left is avalue thatis used by theél§1 ” and “fb8 ” frame-buffer support packages. It denotes the width in
pixels of the border at the left of the screen, before the first pixel that is part of the text region.

window-left is set automatically by the execution of eitfiEt-install or fb8-install , SO as to center the
text region on the screen. A standard package that uses one of those frame-buffer support packages can subsequently alter
its value in order to move the text region to some screen location other than its normal centered position.

window-top (-- border-height) F 0x165

value , return window top border in pixels.

window-top is avalue that is used by thdl31l ” and “fb8 ” frame-buffer support packages. It denotes the number of
display scan lines in the border at the top of the screen, before the first scan line that is part of the text region.

window-top is set automatically by the execution of eitfiel-install or fb8-install , SO as to center the text
region on the screen. A standard package that uses one of those frame-buffer support packages can subsequently alter its
value in order to move the text region to some screen location other than its normal centered position.

within ('n min max -- min<=n<max?) AF 0x45

Returntrue if nis betweemmin andmax-1, inclusive.

195

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

wljoin (w.lo w.hi -- quad) F 0x7D
Join two doublets to form a quadlet.

The high bits of each of the two doublets must be zero.

write (addr len -- actual) M
Write memory buffer to device; return actual byte count.

Write len bytes to the device from the memory buffer beginnirapdt. Returnactual the number of bytes actually
written. If actualis less thaen, the write did not succeed.

For some devices, tleeek method sets the position for the nexite

write-blocks (‘addr block# #blocks -- #written) M
Write #blocksfrom memory into device, starting lalock#

Write #blocksrecords of lengthblock-size bytes from memory (starting atldr) to the device (starting at device
block block#. Return#written, the number of blocks actually written.

If the device is not capable of random access (e.g., a sequential access tapebbmk#ey,ignored.

word (delim "<delims>text<delim>" -- pstr) A
Parse text from the input buffer, delimited dslim

words (--) A
Display the names of methods or commands.

If there is aractive packagedisplay the names of its methods. Otherwise, display an implementation-dependent subset
(preferably the entire set) of the globally visible Forth commands. In either case, the order of display is to display more
recently defined names before less recently defined names.

wpeek (waddr -- false | w true) F 0x221
Attempt to fetch the doublet atwaddr.

Return the data artdue if the access was successfulfadse return indicates that a read access error occurred.

wpoke (w waddr -- okay?) F 0x224
Attempt to store the doubletto waddr.

Returntrue if the access was successfulfadse return indicates that a write access error occurred.

xor (x1x2--x3) AF 0x25
Return bitwise logical “exclusive-or” ofl andx2.

196

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex B
Open Firmware terminal emulator control sequences

(normative)

B.1 Introduction
Theterminal emulator support packagaplements an ANSI X3.64 terminal (as specified in ANSI X3.64-1979).
The terminal emulator support package shall interpret the comsegjuénces ithe the requiredubclause, B.2.
It should interpret the commarsgquences ithe recommendesdubclause, B.3. It maiynterpret andmplement
additional implementation-dependent command sequencsisalltignoresyntactically valid ANSI X3.64scape
sequences whose behavior it doeg implement. It shaltisplay any printable charactérat is not part of an
escape sequence usitigaw-character , then shall advance the cursor to the next column as follows:

If the value ofcolumn# is less than the value #€olumns , add one t@olumn# .

Otherwise, perform the functions of “Return” and “Line-feed” as described below.
Notation:

“ESC” represents the “Escape” character (0x1B).

“#” represents an optional numeric parameter.
Other characters represent themselves.

B.2 Required command sequences

The definitions of the following sequences are as given in ANSI X3.64-1979. The terminal emulator state variables
that areaffectedand thedisplay device low-level interfacgbat areused to implement each commaae listed
after the command.

Sequence ANSI X3.64 Mnemonic Affected Words
ESC[#A Cursor ip (CUL) Affects:line#
ESC[#B Cursor down (CUD) Affectdine#
ESC[#C Cursor forward (CUF) Affects: column#
ESC[#D Cursor backward (CUB) Affects: column#
ESC[#E Cursor next line (CNL) Affects: line#
ESC[#1;#2f Cursorposition (CUP) Affects:line# andcolumn#
ESC[#1;#2H Cursorposition (CUP) Affects:line# andcolumn#
ESC[J Erase in diplay (ED) Usesdelete-characters anddelete-lines
ESCIK Erase in line (EL) Uses:delete-characters
ESC[#L Insert line (IL) Usesiinsert-lines
ESC[#M Delete line (DL) Uses:delete-lines
ESC[#@ Insert character (ICH) Uses:insert-characters
ESC[#P Delete character (DCH) Useadelete-characters
ESC[#m Selectgraphic rendition (SGR) * Affects:inverse?
* |If the numeric parameter is omitted, the default value is zero. At least the following two graphic renditions shall be
implemented:

— 0, which means normal rendition

— 7, which means negative (reverse) image

If negative image is on, subsequent characters are displayed with the foreground and background colors exchanged
(reversed).

197

IEEE
Std 1275-1994

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

The following special characters shall also be defined:

Character Mnemonic Affected Words Description
CTRL-G (0x7) Bell (BEL) Uses:blink-screen and An audible indicator sounds or a visible
“ring-bell " method indication isgiven.

CTRL-H (0x8)

Backpace (BS)

Affects: column#

The cursor moves ormsition to the left on the
current line. If it is alreaglat the left ede of the
screen, nothig happens.

CTRL-I (0x9)

Tab (TAB)

Affects: column#

The cursor movesght on the current line to the
next tab stp. The tab stps are fixed at evgr
multiple of eght columns. If the cursor is alread
at the rght edye of the screen, nothgrhappens;
otherwise, the cursor movegfit a minimum of
one and a maximum ofggit charactepositions.

CTRL-J (OxA)

Line-feed (LF)

Affects: line#

Uses:delete-lines

The cursor moves down one line, remagyéth
the same charactposition on the line. If the
cursor is alreaglat the bottom line, the screen
scrolls p before the cursor is moved down.

CTRL-K (OxB)

Reverse line-
feed (VT)

Affects: line#

The cursor movespuone line, remainig at the
same charactguosition on the line. If the cursor
is alread at the t@ line, nothirg hgppens.

CTRL-L (0xC)

Form-feed (FF)

Affects:line# andcolumn#

Uses:erase-screen

The cursor ipositioned to the “homefosition
(upper-left corner) and the entire screen is
cleared.

CTRL-M (OxD)

Return (CR)

Affects: column#

The cursor moves to the leftmost character
position on the current line.

B.3 Recommended control sequences

The following escape sequences are not defined by ANSI X3.64. Their descriptions should be as given:

Sequence | Mnemonic | Affected Words Description
ESC[p Normal text | Affects: If inverse-screen? isfalse , does nothig. If
colors inverse-screen? inverse-screen? istrue , sets it tdfalse , charmes the
andinverse? value ofinverse? to its gposite value (i.e., frortrue to
false or vice versa), and executesert-screen
Uses:
invert-screen The effect of this is to establish the default woeind and
baclground colors for the entire screen.
ESC[q Inverse text | Affects: If inverse-screen? istrue , does nothig. If
colors inverse-screen? inverse-screen? isfalse , setsittdrue , chames the
andinverse? value
of inverse? to its gposite value (i.e., frontrue tofalse or
Uses: vice versa), and executgwert-screen
invert-screen
The effect of this is to establish inverted fm@und and
baclground colors for the entire screen (i.e., the screen
baclground uses the default fgmund color, and vice versa).
ESC[s Reset diplay | Uses: Resets the digay device associated with the terminal emulator
device reset-screen

198

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex C
The tokenizer

(informative)

C.1 Introduction

This standard precisely defines the behavior of FCode binary, but it does not specify either the FCode text format or
the means to convert that text into FCode binary.

Nonetheless, it is useful to have an agreed-upon format for FCodanigxhe means toonvertthat text into
FCode binaryThis annexdocuments a recommended format for FCode dext arecommended behavior for a
tokenizemprogram to convert that text into FCode binary.

C.2 Recommended tokenizer behavior

The tokenizerprogrammay be implemented on any convenispstem of choicelts input is a standard tekte
(FCode text). Its output is a binary file (FCode binary) in a format suitable for the development system being used.

FCode text is substantialimilar in appearance to normal Forth text. Certain additional tokenizer commands are
also recognized. Certain Forth commands are not recognized.

The tokenizer’'s behavior is to reagbrds, one at a time, frotihe FCode text fileand take appropriate action.

Appropriate actions are as follows:

— If the wordread is an existingCodename (with an assigndedCode#), generatine appropriaté-Code# and
append that number to the FCode binary file.

— If the word read is a standard tokenizer macro (indicated by a type-code of “T”), generate the appev@sate
of FCode#s as specified the description of the comman8ome macros will cause more words toréad
from the input FCode text file. These usually have a stack comment including [...], i.e., [text<delim>].

— If the word that was read is a tokenizer-only command (these are listed later), perform the appropriate action as
specified.

— Otherwise, print an error message that the particular word is not recognized.

Tokenizing behavior continuamtil the end of thé=Code text file is encountered. ttiere were noerrors, the
FCode binary file is created.

Standard tokenizer macros (indicated byype-code of‘T”) will generate a stream dfCodes to perform the
equivalent function. If the macro relatively long (morehantwo to four FCodesand isused frequentlythis
could have an adversdfect onthe total size of th&Code binaryand could makethe compiled Forth dictionary
larger. To avoid this problem, create a duplication definitionin the FCode, as follows:

: 3dup 3dup ;

C.3 Tokenizer-only commands
The following commandsare recognized by th&okenizerand cause special actions to be performed by the

tokenizer. In contrast to most other Forth commands, these comm@mdy meaningful in the context of an
FCode text file being “tokenized.”

199

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

C.3.1 Manual tokenizer output

These commands allothe user to generate arbitrasgquences of FCodgytes This isuseful, for example, if
using an oldetokenizerthat does not support some new FCode features.

Within “tokenizer-escape” modéhe basic command ismit-byte to manually output a specified FColgte.
Some tokenizers may suppeadditional commands as well. For example, a tokenizer written in Raghallow
Forth calculationsdo-loops, and even colon definitionswithin “tokenizer-escape’mode, in order to create
complex sequences of FCode byt@skenizers written in other languagesay choose to supposgimilar
extensions.

tokenizer| (--) T
Enter tokenizer-escape mode, allowing manual FCode generation.

Save the current tokenizer numeric conversion radix, and set the radix to sixteen (hexadecimal). Enter tokenizer escape
mode so that the tokenizer will interpret all subsequent commands as direct tokenizer commands, not as FCodes. The
emit-byte command may be used while in this mode, to output specified FCode byte(s). Other commands may also be
used, but these are not specified in this document. No FCode is generated by this command.

Tokenizer-escape mode is exited]tmkenizer
FCODE ONLY command.

Jtokenizer (--) T
Exit tokenizer-escape mode, resumes FCode interpretation.

Restore the tokenizer numeric conversion radix to the value saveldnizer| and exit tokenizer escape mode, thus
resuming the tokenizer’'s normal behavior of converting words of FCode source to corresponding FCode numbers.

No FCode is generated by this command.
Seetokenizer| for more information.
FCODE ONLY command.

emit-byte (FCodet# --) T
Output given FCode#, only in tokenizer-escape mode.

Only valid while in tokenizer-escape mode. Adds the specified FCode# to the FCode program that the tokenizer is
creating.

Used as:

tokenizer[244 emit-byte Jtokenizer
See: tokenizer| for more information.
FCODE ONLY command.

C.3.2 File inclusion

This commandallows FCode texprograms to be factoreaind shared. Ibehaves similarly tdhe #include
statement in the C language. Arbitrary nesting of included files is allowed.

fload ([filename<cr>] --) T
Insert the specified file at this point.
Used as:
fload filename <cr>

Save the specification of the current FCode text file. Begin tokenizing the FCode text file spedifesthbye When the
specified file is exhausted, restore the saved file and resume tokenizing it.

fload commands may be nested arbitrarily. In other words, the file just loaded may containfitsadwncommands,
as well as normal FCode text commands.

The behavior ofload inside a definition in FCode source text is unspecified.
The syntax fofilenameis dependent on the system on which the tokenizer is running.
FCODE ONLY command.

200

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex D
Sun4c ™ bus specifics

(informative)

D.1 Overview and references

This annexprovides an example dhe application of the Open Firmwasgecification to a particulasystem
architecture. The structure of this annexysical of the structure of documentiat “bind” the Open Firmware
standard to particular buses, and can be used as a template for other such documents.

The architecturedescribed inthis annex is the Sun4gystemarchitecture, which is the firgystem onwhich
OpenBootthe ancestor of Open Firmwamgas deployedThe Sun4csystemarchitecture, designed for use with

SPARC microprocessors, definemamory management uMU), its associated physical address forraat] a
set of 1/0 devices to support a uniprocessor multitasking operating system with demand-paged virtual memory.

D.1.1 Definitions of terms
bus node:A device node that represents the characteristics of a Sun4c bus.

child node: A device node that represents a device attached to a Sun4c bus.

D.1.2 References
The characteristics of the Sunégstem architecture can be inferreflom the specifications of chipset$

implementing that architecture. Theaspects ofthe Sun4c architecturéhat arerelevant to this annex are
summarized within this annex.

D.2 Bus characteristics

D.2.1 Physical address formats and representations

The mainphysical address bus on Sumdachines consists of a 1-lypefield, representing eithenemory space
(RAM) or I/O space (SBus [B2and otherdevices),and a30-bit offset. Conventionallythis 30-bit range is
considered to be centered around zero, so dffet valuesrange from zero to Ox1FFF.FFFRnd from
0xE000.0000 to OXFFFF.FFFF.

This physical address is represented numerically byygpenumber (zero for memory, one for 1/O) time phys.hi
number and theffset inthe phys.lonumber. The text string representatiorftisffset”, where “t” is either the
character “0” or the character “1”, and “offset” is the ASCII representation of a hexadecimal number.

D.2.2 Bus-specific configuration variables

None.

™ Sun4c is a trademark of Sun Microsystems, Inc.
9 Such chip sets are available from LS| Logic Corporation and perhaps from other vendors.

201

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

D.2.3 Format of a probe list

None. This bus cannot accepplug-in devices However,most Sun4c implementations have 8&Bus [B2]
subordinate to the root node.

D.2.4 Interrupt specification format

The Sun4c architecturesesthe SPARC processor'siterrupts directly; thus, interrupesre specified as fothat
processor. Specifically, interrupt priority levels range from one to fifteen and are not vectored.

D.2.5 FCode interpretation semantics

None. This bus cannot accegug-in devices

D.3 Bus nodes

In Sun4c systems, the Suridas node ishe root node of thdevice tregsince the Sundbus is connected directly
to theMMU, and thus is the maiphysical address bus tife machine. In the earlie®penBoot implementations,
the root node of thdevicetree represented nonly the mainphysical address bus but alde characteristics of
the CPU and itsassociated MMUif any). Subsequent experience shdtat it isbetter to represent tHePU and
MMU characteristics in separate nodes subordinateetdoot node. Representi@PU information in separate
nodes allows individual description of the vari@RUs of a multiprocess systeandprovides a logical separation
between the bus information and the CPU information.

This annex is historically accurate, representing@R& characteristics in the root node, lthat should not be
construed as a recommendation for that technique.

D.3.1 Properties
D.3.1.1 Open Firmware-defined properties for bus nodes

Since the Sun4c bus node is the root node odélvéece treeand thus has no parent address space, there is neither a
“reg ” propertynor a ‘ranges " property.

The following standard properties, aefined in Open Firmware, have special meanings or interpretations for
Sun4c.

“device_type " S
Standardgroperty nameo specify the implemented interface.
prop-encoded array:
Text string, encoded wittncode-string.

The historical value for this property for Sun4c machines is the string “cpu”, indicating that the node in question
represents not only the Sun4c physical address bus, but also the characteristics of the main system CPU. This double-use
of the node is an historical accident and is not recommended as a precedent for the future.

202

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

D.3.1.2 Bus specific properties for bus nodes

mips-off S
property nameo specify the CPU performance.

prop-encoded-array:
Integer, encoded wittncode-int

The value of this property indicates the approximate speed of the processor, in millions of instructions per second, when
the cache is turned off. Its primary intended use is for calculating the number of iterations needed by short time-delay
loops.

mips-on S
property nameo specify the CPU performance.

prop-encoded-array:
Integer, encoded wittncode-int

The value of this property indicates the approximate speed of the processor, in millions of instructions per second, when
the cache is turned on. Its primary intended use is for calculating the number of iterations needed by short time-delay
loops.

mmu-nctx S
property nameo specify the number of MMU contexts.

prop-encoded-array:
Integer, encoded wittncode-int
The value of this property indicates the number of contexts implemented by the system MMU.

mmu-npmg S
property nameo specify the number of MMU PMEGs.

prop-encoded-array:
Integer, encoded wittncode-int
The value of this property indicates the number of Page Map Entry Groups implemented by the system MMU.

vac-hwflush S
property nameo indicate the presence of cache-flushing hardware.

prop-encoded-array:
None; the information is conveyed by the presence or absence of the property.

The presence of this property indicates that the virtually addressed cache has hardware support for cache flushing. The
absence of this property indicates that cache flushing must be done with low-level software operations.

vac-linesize S
property nameo indicate the cache line size.

prop-encoded-array:
Integer, encoded wittncode-int
The value of this property is the number of bytes in each line of the virtually addressed cache.

busmaster-regval S
property nameo specify the Ethernet chip hardware configuration.

prop-encoded-array:
Integer, encoded wittncode-int

The value of this property is the value that should be written to the CSR3 register of the AMD 7990 Ethernet chip that is a
standard part of the Sun4c system architecture. A typical value is 0x07, indicating that the BSWP, ACON, and BCON bits
of that register should be set to ones.

203

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

buserr-type S
property nameo specify the type of error registers.

prop-encoded-array:
Integer, encoded wittncode-int

If this property is absent, or if it is present with a value of zero, the system bus error register layout is that of a
SPARCSstation-1 machine. If the property is present with a value of one, the system bus error register layout is that of a
SPARCSstation-2 machine.

idprom S
property nameo specify the IDPROM contents.

prop-encoded-array:
Byte array, encoded wittncode-bytes

The 32-byte value of this property is the verbatim contents of the Sun IDPROM structure, which contains the machine’s
serial number, Ethernet address, and other information.

clock-frequency S
property nameo specify the CPU clock frequency.

prop-encoded-array:
Integer, encoded wittncode-int
The value of this property is the frequency in megahertz of the CPU’s external clock.

get-unum S
property nameo specify the address of an address-to-name translation routine.

prop-encoded-array:
Integer, encoded wittncode-int

The value of this property is the virtual address of a subroutine that translates a Sun4c physical address to a human-
readable null-terminated string telling the location on the CPU board of the field-replacable part that contains that address.
The subroutine is called with standard SPARC subroutine calling conventions. The primary use of the subroutine is to
help the operating system display the location of a defective memory module.

NOTE—The use of a property to report the address of a machine language subroutine is not a recommended technique.
The register usage and calling conventions for such subroutines often varies from compiler to compiler, thus the use of
machine language subroutines creates a dependency on a particular compiler.

D.3.2 Methods
D.3.2.1 Open Firmware-defined methods for bus nodes

Sun4c bus nodesplement thefollowing standardmethodsas defined in Open Firmware, with physical address
representations as specified in D.2.1.

decode-unit (‘addr len -- phys.lo ... phys.hi) Convert text unit-string to physical address.
map-out (virt size --) Destroy mapping from previomsp-in .

map-in ('phys.lo ... phys.hi size -- virt) Map the specified region; return a virtual address.
close () Close this previouslgpen ed device.

open (-- okay?) Prepare this device for subsequent use.

204

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

D.3.2.2 Bus-specific methods for bus nodes

decode-space (addr len -- phys.hi) M
Convert text string tphys.hi

Convert the address space named by the stddglento the numerical representation of the high component of the
physical addresshys.hi Either of the strings “mem” or “obmem” is converted to the numerical value 0, and either of the
strings “io” or “obio” is converted to the numerical value 1.

D.4 Child nodes

D.4.1 Properties
D.4.1.1 Open Firmware-defined properties for child nodes

The following standard properties, as defined in Open Firmware, apply to Shifdloodeswith physical address
representations and interrupt formats as specified in D.2.1.

“

reg” Standardproperty nameo define the package’s registers.
“interrupts " Standardproperty nameo define the interrupts used.

D.4.1.2 Bus-specific properties for child nodes

None.

D.4.2 Methods

There are no special requirements onrntethodf Sun4cachild nodeseyond those described in Open Firmware.

D.5 User interface extensions

This section describes commanitgt areonly applicable to Sundsystems or have specigeaning wherused
with Sun4c systems.

D.5.1 Bus-specific interpretations of standard commands

None.

D.5.2 Bus-specific FCodes

None.

D5.3 Bus-specific FCodes

An Open Firmware-compliant user interface on a Swsy&temshould implement théollowing Sun4c-specific
user interface commands.

obio (-~ space)
Theon-boardl/O address space; for mapping.

205

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

obmem (-- space)
Theon-boardmemory address space; for mapping.

sbus (-- space)
The SBus address space; for mapping.

pgmap@ (virt -- pme)
The page map entpmecorresponds to the virtual addresd.

pgmap? (virt --)
Display the page map entry corresponding to the virtual address

pgmap! (pme virt --)
Store a page map entpynefor the virtual addressrt.

smap@ (virt -- pmeg)
The segment map entpynegcorresponds to the virtual addresd.

smap? (virt --)
Display the segment map entry for the virtual addvass

smap! (pmeg virt --)
Store a segment map entry for the virtual addvass

map? (virt --)
Display the multi-level MMU mappings corresponding to the virtual addriess

cache-off (--)
Disable the CPU cache.

cache-on (--)
Enable the CPU cache.

cacheable (space -- cache-space)
Adjust the address spaspaceso the subsequent address mapping is cacheable.

cdata@ (offset -- data)
datais atoffsetfrom the start of the CPU cache.

cdata! (data offset --)
Storedata at offsetfrom the start of the CPU cache.

clear-cache (--)
Invalidate all the entries in the cache.

ctag@ (offset -- value)
The cache tagalueis atoffsetfrom the beginning of the CPU cache.

ctag! (value offset --)
Storevalueat theoffsetfrom the start of the CPU cache.

206

CORE REQUIREMENTS AND PRACTICES

aerr!
Write the asynchronous error register.

aerr@
Read the asynchronous error register.

averr!

Write the asynchronous virtual address register.

averr@

Read the asynchronous virtual address register.

aux!
Write the auxiliary register.

aux@
Read the auxiliary register.

context!
Write the context register.

context@
Read the MMU context register.

dcontext@
Read the cache context register.

enable!
Write the system enable register.

enable@
Read the system enable register.

idprom@

(data --)

(--data)

(data --)

(--data)

(data --)

(-- data)

(data --)

(--data)

(--data)

(data --)

(--data)

(offset -- data)

Read the idprom byte affsetfrom the start of the idprom.

interrupt-enable!
Write the interrupt enable register.

interrupt-enable@
Read the interrupt enable register.

serr!
Write the synchronous error register.

serr@
Read the synchronous error register.

sverr!

Write the synchronous error virtual address register.

(data --)

(--data)

(data --)

(--data)

(data --)

IEEE
Std 1275-1994

207

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

sverr@ (--data)
Read the synchronous error virtual address register.

pagesize (--size)
The page size of the CPU MMU.

segmentsize (--size)
The segment size of the CPU MMU.

map-page (phys space virt --)

Create a mapping for physical addrphgs spaceo virtual addressirt. Bothphysandvirt, if not already on a page
boundary, are truncated to the next lower page boundary.

map-pages (phys space virt size --)

Performs consecutive callsitmap-pages to map the range of physical addresses beginniplyst spac@and extending
for sizebytes to a range of virtual addresses beginningtat

map-segments (smentry virt size --)
Map a memory region witsmap! .

D.6 Client execution environment

NOTE—The following information would typically be specified in a document descrtbmgpplication of Open Firmware to
a particular system. Such information would usually be considered inapprdpriatelocument describinpe application of
Open Firmware to a standard bus. The information is included here beh@musanex applies to the entigin4c system
architecture, not just to the Sun4c bus.

When a client begins execution, PMEGs OxFF, OXFE, Oxéfid 0xFC, ... (as neededare already in useOnly
context O is used. PMEG OxFF is usedtlas invalid PMEGand isfilled with invalid PTEs. Unused virtual
addresseare invalidated. All unused segments seéto the invalid PMEG. All unusedemory pageareset to
the invalid PTE.

All memory is scrubbekither set to O or read/written to clean out start-up parity error artifacts). Parity is turned
off. All cache tags are cleared before use. Some pages are marked cacheable, and the cache is turned on.

The trap table is set $bhat a routine t@savethe state of th€PU isinstalled in all traprectors except for window-
overflow (trap 0x05),window-underflow(trap 0x06),and interrupt-level-14 (trap Ox1E). The interrupt-control
register is set to enable level-iderruptsfor a counterand toallow anyinterrupts. The processor-interrupvel

is set to 13. The counter-limit value is set to interrupt every 10 ms.

208

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex E
SCSI host adapter package class

(informative)

E.1 Overview and references

This annexdescribeghe application of Open Firmware to the Small Comp8tetems Interface (SCSI) bus and
addresses nodes representing SCSI host adapters.

E.1.1 Definitions of terms

bus node:A device node that represents the interface, or “host adapétwien a SCSI busd its parenfwhich
may be another bus).

child node: A device node that represents an SCSI “target” device.

E.1.2 References

SCSI (Small ComputeBystems Interface) is a peer-to-p#€r bus defined by ISO/IEC 10288 : . . . [B4], which
will supersede ISO/IEC 9316 : 1989 when it is approved and published.

E.2 Bus characteristics

E.2.1 Physical address formats and representations

SCSI devices are addressed with a 4-bit “target” number and a 3-bit “unit” number.

The numerical representation on an S6& physical address consiststloé target number in theigh number
and the unit number in thew number. The text string representatiotaiget,unit wheretargetandunit areboth
hexadecimal numbers. Future SCSI extensions have proparged addresspaces greatghan 4bits and unit
addressspacedarger than Jits. The given address representa@diows for up to 32 bits for each tife target
and unit addresses.

SCSI is not a memory-mapped bus. Operations on talgétesare performed by executing a transaction

consisting of multiple phases, including selecting a particular tdeyéte,sending a multibyte command to the
target, possibly transferring multiple data bytes to or from the target, and returning status.

E.2.2 Bus-specific configuraton variables

None.

E.2.3 Format of a probe list

None.

E.2.4 Interrupt specification format

None (SCSI has no interrupts).

209

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

E.2.5 FCode interpretation semantics

None (SCSI has no provision for device identification via FCode.)

E.3 Bus nodes

E.3.1 Properties
E.3.1.1 Open Firmware-defined properties for bus nodes
The following standargroperty, as defined in Open Firmware, has special meaning or interpretation for SCSI:

“device_type " S
Standardgrop-nameto specify the implemented interface.

The meaning of this property is as defined in Open Firmware. A package conforming to this specification and

corresponding to a device that implements an SCSI Bus shall implement this property with the strirsgsiafie ™.
E.3.1.2 Bus-specific properties for bus nodes

None.

E.3.2 Methods
E.3.2.1 Open Firmware-defined methods for bus nodes

A packagemplementing thescsi-2 " device typeshall implement the following standamethodsas defined in
Open Firmware, with physical address representations as specified in E.2.1:

open (-- okay?) M
Prepare this device for subsequent use.

close (--) M
Close this previouslgpen ed device.

dma-alloc (... size --virt) M
Allocate a memory region for later use.

dma-free (virt size --) M
Free memory allocated withma-alloc

decode-unit (‘addr len -- phys.lo ... phys.hi) M
Convert text unit-string to physical address.

E.3.2.2 Bus-specific methods for bus nodes

A packagemplementing thescsi-2 " device typeshall implement the following bus-specifizethods

max-transfer (--n)
Returns the maximum DMA transfer length supported by the hardware.
set-address (unit# target# --)

Sets the SCSI target number (0x0..0xf) and unit number (0..7) to which subsequent comipiginds ap

210

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

set-timeout (msecs --)

Sets the maximum length of time in milliseconds that the driver will wait for the completion of a command. The default
value of zero means to wait indefinitely. A hardware error result is reported for a command that times out.

show-children (-)

Searches the SCSI bus for attached target devices and their associated units. Displays the information that the SCSI
“Inquiry” command reports for those devices.

execute-command (buf-addr buf-len dir cmd-addr cmd-len -- hw-err? | statbyte 0)

Executes the SCSI command, which is stored in memamydtaddrand whose length smd-len. Diris true if the data
transfer phase of the SCSI command will transfer data from the device to memory, and false othdraiilis the

address of the memory buffer to be used for the data transfer phabef-temds the expected maximum length of the

data transfer phase. The memory buffer must be contained within a DMA-accessible region that was returned by a
previous execution afma-alloc . If buf-lenis zero, indicating that the command is not expected to have a data transfer
phase, botlbuf-addranddir are ignoredHw-err?, the returned hardware error status, is nonzero if the command could
not be executed at all (perhaps due to the device not responding to the selection attewety?fis zero statbyteis

the status byte returned by the status phase of the command.

retry-command (buf-addr buf-len dir cmd-addr cmd-len #retries -- O | hw-err? stat | sensebuf O stat)

Executes a SCSI command, automatically retrying under certain condidtrgscommand is similar to

execute-command except thatetry-command automatically retries under certain failure conditions and

automatically executes the “request sense” SCSI command as necésddaegis the maximum number of times that the
command will be retried; #retriesis —1, the command will be retried indefinitefgtry-command returns O if the

command eventually succeeds. Otherwise, it returns the status byte returned by the last attempted command on top of the
stack (-1 if the command failed due to a hardware error). The second number on tHerstacR (ndicates whether or

not the extended sense information is availablewterr? is zero, the third number on the stas&nsebyfis the address

of a memory buffer containing the extended sense information returned by the “request sense” command that was executed
after the last attempt to execute the desired command. The criteria for whether or not to retry the command are as follows:

a) If the requested number of retries have already been performed, do not retry.

b) If the failure is due to a hardware error, do not retry.

c) If the failure was due to a “device busy” condition reported in the status byte, retry.

d) Otherwise, execute the “get extended status” command and attempt to determine whether or not the failure could be
retried based on the data in the returned sense buffer|agsfol

1) Unknown error class (not 7) is not retryable.

2) Filemark is not retryable.

3) End of media is not retryable.

4) lllegal length indicator is not retryable.

5) sense key = No Sense is retryable.

6) sense key = Recoverable error is retryable.

7) sense key = Not Ready is retryable.

8) sense key = Unit Attention is retryable.

9) Transaction aborted due to Incoming SCSI Bus reset is retryable
10) Otherwise, the error is not retryable.

no-data-command (cmd-addr -- error?)
Executes a simple SCSI command, automatically retrying under certain conditions.

cmd-addris the address of a 6-byte command buffer containing an SCSI command that does not have a data transfer
phase. Executes the command, retrying indefinitely with the same retry critestayasommand

error? is nonzero if an error occurred, zero otherwise.

NOTE—no-data-command is a convenience function. It provides no capabilities that are not present in
retry-command , but for those commands that meet its restrictions, it is easier to use.

211

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

short-data-command (data-len cmd-addr cmd-len -- error? | data-adr 0)
Executes a simple SCSI command, automatically retrying under certain conditions.

cmd-addris the address amind-lenthe length of a command buffer containing an SCSI command whose data transfer
phase is expected to transfer less than 256 bytes in an incoming direatetenis the expected length (1..255) of the
data transfer. Executes the command, retrying indefinitely with the same retry critetiy a®mmand

error? is nonzero if an error occurred, zero otherwiseribr? is zero,data-adris the address of a buffer containing the
data transferred by the execution of the command.

NOTE—short-data-command is a convenience function, eliminating the need for allocating a DMA buffer. It is
primarily intended for use with “informational” SCSI commands like “read block limits” and “inquiry”.

diagnose (--error-code | 0)

Performs a simple self-test for a generic SCSI device.

Perform an SCSI “test-unit-ready” command on the currently selected target and usdtt(gddress). If that fails,
display a message indicating the details of the failure and return a nonzero error code. Otherwise, perform an SCSI “send-
diagnostic” command, returning zero if it succeeds or a nonzero error code if it fails.

E.4 Child nodes

E.4.1 Properties

E.4.1.1 Open Firmware-defined properties for child nodes
None.

E.4.1.2 Bus-specific properties for child nodes

None.

E.4.2 Methods

E.4.2.1 Open Firmware-defined methods for child nodes
None.

E.4.2.2 Bus-specific methods for child nodes

None.

E.5 User interface extensions

None.

212

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

E.6 Sample driver code

This subclause contains the source code fdf@ode programimplementing a driver for a hypothetical SCSI host
adapter device. This source code can be processetbkgrazermprogram that behaves as described in annex C.

E.6.1 overall.fth

\ FCode driver for hypothetical SCSI host adapter

hex

" XYZl,scsi" name \ Name of device node

" XYZI,12346-01" model \ Manufacturer's model number

" scsi-2" device-type \ Device implements SCSI-2 method set
30 intr \ Device interrupts on level 3, no vector
external

\ These routines may be called by the children of this device.

\ This card has no local buffer memory for the SCSI device, so it

\ depends on its parent to supply DMA memory. For a device with
\ local buffer memory, these routines would probably allocate from
\ that local memory.

:dma-alloc (n--vaddr) "dma-alloc" $call-parent ;
:dma-free (vaddrn--) " dma-free" $call-parent ;
:dma-sync (vaddr devaddr n--) " dma-sync" $call-parent ;
:dma-map-in (vaddr n cache? -- devaddr) " dma-map-in" $call-parent ;
: dma-map-out (vaddr devaddr n --) " dma-map-out" $call-parent ;
: max-transfer (--n)

" max-transfer" [] $call-parent catch if 2drop h# 7fff.ffff then

\ The device imposes no size limitations of its own; if it did, those

\ limitations could be described here, perhaps by executing:

\' my-max-transfer min

fload scsiha.fth
fload hacom.fth
new-device
fload scsidisk.fth \ scsidisk.fth also loads scsicom.fth
finish-device
new-device
fload scsitape.fth \ scsitape.fth also loads scsicom.fth
finish-device

end0

E.6.2 scsiha.fth

\ Example FCode driver for a hypothetical SCSI bus interface device
hex

\ The following structure defines the registers for the SCSI device.

\ This hypothetical device is designed for ease of programming. It

\ has a separate register for each function (no bit packing). All
\ registers are both readable and writeable. The device has a random-

213

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

\ access buffer large enough for a maximum-length SCSI command block.

\ To execute a SCSI command with this device, write the appropriate

\ information into the registers named ">cmd-adr" through ">input?", write
\ a 1 to the ">start" register, and wait for the ">start" register to

\ change to 0. Then read the ">phase" register to determine whether or

\ not the command completed all phases (">phase" reports 0 on success,
\ h# fd for incoming reset, h# ff for other hardware error).

\ If so, ">status” contains the SCSI status byte, and ">message-in"

\ contains the command-complete message byte.

struct (scsi-registers)

Oc field >cmd-adr \ Up to 12 command bytes

4 field >cmd-len \ Length of command block

4 field >data-adr \ Base address of DMA data area
4 field >data-len \ Length of data area

1 field >host-selectid \ Host's selection ID

1 field >target-selectid \ Target's selection ID

1 field >input? \ 1 for data output; O for data input

1 field >message-out \ Outgoing message byte

1 field >start \ Write 1 to start. Reads as 0 when done.
1 field >phase \ Reports the last transaction phase
1 field >status \ Returned status byte

1 field >message-in \ Incoming message byte

1 field >intena \ Write 1 to enable interrupts.

1 field >reset-bus \ Write 1 to reset the SCSI bus.

1 field >reset-board \ Write 1 to reset the board.

constant /scsi-regs

\ Now that we have a symbolic name for the size of the register block,
\ we can declare the "reg" property.

\ Registers begin at offset 800000 and continue for "/scsi-regs" bytes.

my-address 80.0000 + my-space /scsi-regs reg

-1 instance value regs \ Virtual base address of device registers
0 instance value my-id \ host adapter's selection ID

0 instance value his-id \ target's selection ID

0 instance value his-lun \ target's unit number

\ Map device registers

:map (--)
my-address 80.0000 + my-space /scsi-regs (‘addr-low addr-high size)
" map-in" $call-parent to regs)

;unmap (--)

regs /scsi-regs " map-out” $call-parent -1 to regs

l

create reset-done-time O,
create resetting false ,

\ 5 seconds appears to be about the right length of time to wait after

\ a reset, considering a variety of disparate devices.
d# 5000 value scsi-reset-delay

214

CORE REQUIREMENTS AND PRACTICES

: reset-wait (--)
resetting @ if
begin get-msecs reset-done-time @ - 0>= until
resetting off
then

l

: reset-scsi-bus (--)
1 regs >reset-board rb! \ Reset the controller board.
Oregs >intena rb! \ Turn off interrupts.
1 regs >reset-bus rb! \ Reset the SCSI bus.

\ After resetting the SCSI bus, we have to give the target devices
\ some time to initialize their microcode. Otherwise the first command
\ may hang, as with some older controllers. We note the time when it

\ is okay to access the bus (now plus some delay), and "execute-command"

\ will delay until that time is reached, if necessary.
\ This allows us to overlap the delay with other work in many cases.

get-msecs scsi-reset-delay + reset-done-time ! resetting on

l

0 value scsi-time \ Maximum command time in milliseconds
0 value time-limit \ Ending time for command

: set-timeout (msecs --) to scsi-time ;
0 value devaddr
\ Returns true if select failed

: (exec) (dma-adrlen dir cmd-adr,len -- hwresult)
reset-wait \ Delay until any prior reset operation is done.

his-lun h# 80 or regs >message-out rb! \ Set unit number; no disconnect.

my-id regs >host-selectid rb! \ Set the selection IDs.
his-id regs >target-selectid rb!

\ Write the command block into the host adapter's command register

dup 0 ?2do (data-adr,len dir cmd-adr,len)
overi+c@ (data-adr,len dir cmd-adr,len cmd-byte)
regs >cmd-adr i ca+ rb! (data-adr,len dir cmd-adr,len)

loop (data-adr,len dir cmd-adr,len’)

regs >cmd-len rl! drop (data-adr,len dir)

\ Set the data transfer parameters.

(..dir) regs >input? rb! (data-adrlen) \ Direction
(..len)regs >data-lenrl! (data-adr) \Length

(.. adr)regs >data-adrrl! () \ DMA Address

\ Now we're ready to execute the command.

1 regs >start rb! \ Tell board to start the command.
get-msecs scsi-time + to time-limit \ Set the time limit.

begin regs >start rb@ while \ Wait until command finished.

scsi-time if \ If timeout is enabled, and
get-msecs time-limit - 0>= if \ the time-limit has been reached,

IEEE
Std 1275-1994

215

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

reset-scsi-bus true exit \reset the bus and return error.
then
then

repeat
\ Nonzero phase means that the command didn't finish.

regs >phase rb@

l

\ Returns true if select failed
: execute-command (data-adr,len dir cmd-adr,len -- hwresult | statbyte false)
\ Temporarily put dir and cmd-adr,len on the return stack to get them
\ out of the way so we can work on the DMA data buffer.
>r>r>r (data-adr,len)
dup if (data-adr,len)
\ If the data transfer has a nonzero length, we have to map it in.

2dup false dma-map-in (data-adr,len dma)
2dup swap r>r>r> (data-adr,len dma dma,len dir cmd-adr,len)

(exec) (data-adr,len phys hwres)
>r swap dma-map-out r> (hwresult)
else (data-adr,len)
r>r>r> (exec) (‘hwresult)
then (‘hwresult)
?dup O= if (hwresult |)
regs >status rb@ false \ Command finished; return status byte and false.
then (‘hwresult | statbyte 0)
external

:reset (--) map reset-scsi-bus unmap ;
reset \ Reset the SCSI bus when we are probed.

: open-hardware (-- okay?)
map

\ Should perform a quick "sanity check" selftest here,
\ returning true if the test succeeds.

true
: reopen-hardware (-- okay?) true ;

: close-hardware (--) unmap ;
: reclose-hardware (--) ;

: selftest (-- O | error-code)
\ Perform reasonably extensive selftest here, displaying
\ a message and returning an error code if the
\ test fails and returning O if the test succeeds.
0
: set-address (unit target --)
to his-id to his-lun

l

216

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

E.6.3 hacom.fth

\ Common code for SCSI host adapter drivers

\ The following code is intended to be independent of the details of the
\ SCSI hardware implementation. It is loaded after the hardware-dependent
\ file that defines execute-command, set-address, open-hardware, etc.

headers
-1 value ing-buf \ Address of inquiry data buffer
-1 value sense-buf \ Holds extended error information

0 value #retries (--n) \ number of times to retry SCSI transaction

\ Classifies the sense condition as either okay (0), retryable (1),
\ or non-retryable (-1)
: classify-sense (--0]1|-1)

sense-buf

\ Make sure we understand the error class code.
dup c@ h# 7fand h# 70 <> if drop -1 exit then

\ Check for filemark, end-of-media, or illegal block length.
dup 2+ c@ h#e0 and if drop -1 exit then

2+c@ h#fand (sense-key)

\ no_sense(0) and recoverable(1) are okay.
dup 1 <= if drop O exit then (sense-key)

\ not-ready(2) and attention(6) are retryable.
dup2=swap6=or if 1 else -1 then

l

0 value open-count
external

\ The SCSI device node defines an address space for its children. That
\ address space is of the form "target#,unit#". target# and unit# are

\ both integers. parse-2int converts a text string (e.g., "3,4") into

\ a pair of binary integers.

: decode-unit (addr len -- unit# target#) parse-2int ;

ropen (-- okay?)
open-count if
reopen-hardware dup if open-count 1+ to open-count then
exit
else
open-hardware dup if
1 to open-count
100 dma-alloc to sense-buf
100 dma-alloc to ing-buf
then
then

:close (--)
open-count 1- to open-count
open-count if
reclose-hardware

217

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

else
close-hardware
ing-buf 100 dma-free
sense-buf 100 dma-free
then

l

headers
create sense-cmd 3¢,0c¢,0c,0c¢,ffc,Oc,

1get-sense (--) \lIssue REQUEST SENSE, which is not supposed to fail.
sense-buf ff true sense-cmd 6 execute-command O= if drop then

l

\ Give the device a little time to recover before retrying the command.
: delay-retry (--) 1000 O do loop ;

0 value statbyte \ Local variable used by retry?

\RETRY? is used by RETRY-COMMAND to determine whether or not to retry the
\ command, considering the following factors:

\ - Success or failure of the command at the hardware level (failure at

\ this level is usually fatal, except in the case of an incoming bus reset)

\ - The value of the status byte returned by the command

\ - The condition indicated by the sense bytes

\ - The number of previous retries

\

\ The input arguments are as returned by "scsi-exec".

\ On output, the top of the stack is true if the command is to be retried,

\ otherwise the top of the stack is false and the results that should be

\ returned by retry-command are underneath it; those results indicate the type
\ of error that occurred.

s retry? (hw-result | statbyte O -- true | [[sensebuf] f-hw] error? false)
case
0 of to statbyte endof\ No hardware error; continue checking.
1 of true exit endof\ Retry after incoming bus reset.
(‘hw-result) true false exit \ Other hardware errors are fatal.
endcase

statbyte O= if false false exit then \ If successful, return "no-error".

statbyte 2 and if \"Check Condition", so get extended status.

get-sense classify-sense case (-1[0/1)
\ If the sense information says "no sense", return "no-error".
0 of false false exit endof

\ If the error is fatal, return "sense-buf,valid,statbyte".
-1 of sense-buf false statbyte false exit endof
endcase

\ Otherwise, the error was retryable. However, if we have

\ have already retried the specified number of times, don't

\ retry again; instead return sense buffer and status.

#retries 0= if sense-buf false statbyte false exit then
then

\ Don't retry if vendor-unique, reserved, intermediate, or
\ "condition met/good" bits are set. Return "no-sense,status".
statbyte h# f5 and if true statbyte false exit then

\ Don't retry if we have already retried the specified number

218

CORE REQUIREMENTS AND PRACTICES

\ of times. Return "no-sense,status".
#retries 0= if true statbyte false exit then

\ Otherwise, it was either a busy or a retryable check condition,
\ so we retry.

true

l

\ RETRY-COMMAND executes a SCSI command. If a check condition is indicated,
\ performs a "get-sense" command. If the sense bytes indicate a non-fatal
\ condition (e.g., power-on reset occurred, not ready yet, or recoverable

\ error), the command is retried until the condition either goes away or

\ changes to a fatal error.

\

\ The command is retried until

\ a) The command succeeds, or

\ b) The select fails, or dma fails, or

\ ¢) The sense bytes indicate an error that we can't retry at this level, or

\ d) The number of retries is exceeded.

\ #retries is number of times to retry (O: don't retry, -1: retry forever)
\

\ sensebuf is the address of the sense buffer; it is present only

\if f-hw is 0 and error? is nonzero. The length of the sense buffer
\ is 8 bytes plus the value in byte 7 of the sense buffer.

\ f-hw is nonzero if there is a hardware error -- dma fails, select fails,

\ etc. -- or if the status byte was neither O (okay) nor 2 (check condition).
\

\ error? is nonzero if there is a transaction error. If error? is 0,

\ f-hw and sensebuf are not returned.

\

\ If sensebuf is returned, the contents are valid until the next call to

\ retry-command. sensebuf becomes inaccessable when this package is closed.
\

\ dma-dir is necessary because it is not always possible to infer the DMA
\ direction from the command.

\ Local variables used by retry-command?
0 instance value dbuf \ Data transfer buffer

0 instance value dlen \ Expected length of data transfer
0 instance value direction-in \ Direction for data transfer

-1 instance value cbuf \ Command base address
0 instance value clen \ Actual length of this command
external

: retry-command (dma-buf dma-len dma-dir cmdbuf cmdlen #retries -- ...)
(... - [[sensebuf] f-hw] error?)
to #retries to clen to cbuf to direction-in to dlen to dbuf

begin
dbuf dlen direction-in cbuf clen execute-command (hwerr | stat 0)
retry?
while
#retries 1- to #retries
delay-retry
repeat

1

headers

IEEE
Std 1275-1994

219

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

\ Collapses the complete error information returned by retry-command into
\ a single error/no-error flag.

error? (false | true true | sensebuf false true -- error?)
dup if swap O= if nip then then

l

external

\ Simplified "retry-command"” routine for commands with no data transfer phase
\ and simple error checking requirements.

: no-data-command (cmdbuf -- error?)
>r 00true r>6 -1 retry-command error?

l

\ short-data-command executes a command with the following characteristics:
\ a) The data direction is incoming
\ b) The data length is less than 256 bytes

\ The host adapter driver is responsible for supplying the DMA data

\ buffer; if the command succeeds, the buffer address is returned.

\ The buffer contents become invalid when another SCSI command is
\ executed, or when the driver is closed.

: short-data-command (data-len cmdbuf cmdlen -- true | buffer false)
>r >r ing-buf swap true r>r>-1 retry-command (retry-cmd-results)
error? dup O= if ing-buf swap then

l

headers

\ Here begins the implementation of "show-children", a word that

\is intended to be executed interactively, showing the user the

\ devices that are attached to the SCSI bus.

\ Tool for storing a big-endian 24-bit number at an unaligned address

:3c! (naddr--) >rlbsplitdrop r@ c! r@ 1+c! r>2+c! ;

\ Command block template for Inquiry command
create inquiry-cmd h#12¢,0¢,0c¢,0c,ffc,0Oc,

inquiry (--error?)
\ 8 retries should be more than enough; inquiry commands aren't
\ supposed to respond with "check condition”.

ing-buf ff true inquiry-cmd 6 8 retry-command error?

l

\ Returns true if the target number "select-id" responds to the inquiry
\ command.
: probe-target (select-id -- present?)

0 swap set-address inquiry 0=

l

\ Reads the indicated byte from the Inquiry data buffer.

1ing@ (offset -- value) ing-buf + c@ ;

220

CORE REQUIREMENTS AND PRACTICES

:.scsil-inquiry (--) ing-buf 5 ca+ 4 ing@ fa min type ;
:.scsi2-inquiry (--) ing-buf 8 ca+ d# 28 type ;

\ Displays the results of an Inquiry command to the indicated device.

: show-lun (unit target --)

over swap set-address (unit)
inquiry if drop exit then (unit)
0ing@ h# 7f = if drop exit then (unit)
S Unit™ "
1ling@ h# 80 and if ." Removable " then ()
0ing@ case ()

0 of ."Disk " endof

1of ."Tape" endof

2 of ." Printer " endof

3 of ." Processor " endof

4 of " WORM" endof

5 of ." Read Only device" endof
(default) ." Device type " dup .h
endcase 0

ling@ h# 7fand ?dup if ." Qualifier " .h then

4 spaces
3ing@ Of and 2 = if .scsi2-inquiry else .scsil-inquiry then
cr

l

external

\ Searches for devices on the SCSI bus, displaying the Inquiry information

\ for each device that responds.

: show-children (--)
open 0= if ." Can't open SCSI host adapter” cr exit then

80 do
i probe-target if
" Target"i.cr
80 do ijshow-lun loop
then
loop
close
headers

\ The Diagnose command is useful for generic SCSI devices.
\ It executes both "test-unit-ready" and "send-diagnostic"
\ commands, decoding the error status information they return.

create test-unit-rdy-cmd 0c,0c0c0c0c,Oc,
create send-diagnostic-cmd h#1dc,4¢,0¢,0c¢,0c,Oc,

: send-diagnostic (-- error?) send-diagnostic-cmd no-data-command ;

external

: diagnose (-- error?)
0 0 true test-unit-rdy-cmd 6 -1 (dma$ dir cmd$ #retries)
retry-command if ([sensebuf] hardware-error?)
" Test unit ready failed - " ([sensebuf] hardware-error?)

IEEE
Std 1275-1994

221

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
if
" hardware error (no such device?)" cr 0
else ('sensebuf)
."extended status ="cr (sensebuf)
base @ >r ('sensebuf)
8 bounds ?do i3 u.r loop cr ()
then
true
else
send-diagnostic (fail?)
then
headers

E.6.4 scsicom.fth

\ This file contains some words that are useful for both
\ SCSI disk and SCSI tape device drivers.

\ The SCSI disk and SCSI tape packages need to export dma-alloc and dma-free
\ methods so the deblocker can allocate DMA-capable buffer memory.

external
:dma-alloc (n--vaddr) "dma-alloc" $call-parent ;
:dma-free (vaddrn--) " dma-free" $call-parent ;
headers

: parent-max-transfer (--n) " max-transfer" $call-parent ;

\ Calls the parent device's "retry-command” method. The parent device is
\ assumed to be a driver for a SCSI host adapter (device-type = "scsi").

: retry-command (dma-addr dma-len dma-dir cmd-addr cmd-len #retries -- ...)
(...—-false) \ No error
(...--truetrue) \ Hardware error
(... - sensebuf false true) \ Fatal error with extended status
" retry-command" $call-parent

\ Simplified command execution routines for common simple command forms
: no-data-command (cmdbuf -- error?) " no-data-command" $call-parent ;

: short-data-command (data-len cmdbuf cmdlen -- true | buffer false)
" short-data-command" $call-parent

\ Some tools for reading and writing 2-, 3-, and 4-byte numbers to and from

\ SCSI command and data buffers. The ones defined below are used both in
\ the SCSI disk and the SCSI tape packages. Other variations that are

\ used only by one of the packages are defined in the package where they

\ are used.

:+c! (naddr--addr) tuckc! 1+ ;
:3c! (naddr--) >rlbsplitdrop r>+c! +c!c! ;

1-c@ (addr--naddr') dupc@ swap 1- ;
:3c@ (addr--n) 2+ -c@ -c@ c@ 0 bljoin ;
4c@ (addr--n) 3+ -c@ -c@ -c@ c@ bljoin

222

CORE REQUIREMENTS AND PRACTICES

\ "Scratch" command buffer useful for construction of read and write commands

create cmdbuf 0¢,0¢,0¢,0¢,0¢,0¢,0¢,0¢,0c,0c,0c¢,Oc,
:cb! (byte index --) cmdbuf + ¢! ; \ Write byte to command buffer

\ The deblocker converts a block/record-oriented interface to a byte-oriented
\ interface, using internal buffering. Disk and tape devices are usually

\ block- or record-oriented, but the OBP external interface is byte-oriented,

\ in order to be independent of particular device block sizes.

0 instance value deblocker
: init-deblocker (-- okay?)
"" " deblocker" $open-package to deblocker
deblocker if
true
else
." Can't open deblocker package" cr false
then

l

headerless
: selftest (-- error?)
fcode-revision h# 3.0000 >= if
my-unit " set-address" $call-parent
" diagnose" $call-parent
else
0
then

1

headers

E.6.5 scsidisk.fth

\ SCSiI disk package implementing a "block" device-type interface

" sd" encode-string " hame" property
" block" device-type

fload scsicom.fth \ Utility routines for SCSI commands
hex

\ 0 means no timeout
: set-timeout (msecs --) " set-timeout" $call-parent ;

0 instance value offset-low \ Offset to start of partition
0 instance value offset-high

0 instance value label-package

\ Sets offset-low and offset-high, reflecting the starting location of the
\ partition specified by the "my-args" string.

: init-label-package (-- okay?)
0 to offset-high 0 to offset-low
my-args " disk-label" $open-package to label-package
label-package if
0 0 " offset” label-package $call-method to offset-high to offset-low
true

IEEE
Std 1275-1994

223

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

else
." Can't open disk label package" cr false
then

l

\ Ensures that the disk is spinning, but doesn't wait forever.
create sstart-cmd h#1bc,1¢c,0c¢,0c,1¢,0Oc,

: timed-spin (- error?)
d# 15000 set-timeout
sstart-cmd no-data-command
0 set-timeout

l

0 instance value /block \ Device native block size

create mode-sense-cmd h#lac,0c,0c,0c,d#12c,0c,
create read-capacity-cmd h#25c¢,0¢,0c¢,0c,d#12c,Oc,
0c¢,0c,0c,0Oc,

: read-block-size (--n) \ Ask device about its block size.
\ First try "mode sense" - data returned in bytes 9,10,11.

d# 12 mode-sense-cmd 6 short-data-command if O else 9+ 3c@ then
?dup if exit then

\ Failing that, try "read capacity" - data returned in bytes 4,5,6,7.

8 read-capacity-cmd Oa short-data-command if O else 4 +4c@ then
?dup if exit then

d# 512 \ Default to 512 if the device won't tell us.

l

external

\ Return device block size; cache it the first time we find the information.
\ This method is called by the deblocker.
: block-size (--n)

/block if /block exit then \ Don't ask if we already know.

read-block-size dup to /block

l

headers

\ Read or write "#blks" blocks starting at "block#" into memory at "addr”
\ Input? is true for reading or false for writing.

\Command is 8 for reading or h# a for writing.

\ We use the 6-byte forms of the disk read and write commands.

12c! (naddr--) >rlbsplit 2drop r> +cl! cl;
14c! (naddr--) >rlbsplit r>+c! +cl +clc! ;

s riw-blocks (‘addr block# #blks input? command -- actual#)
3 pick h# 100000 u>= if \ Use 10-byte form (‘addr block# #blks dir cmd)
h# 20 or O cb! \ 28 (read) or 2a (write) (addr block# #blks dir)
-rot swap (‘addr dir #blks block#)
cmdbuf 2 + 4c! (‘addr dir #blks)
dup cmdbuf 7 + 2¢!

224

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
d# 10 (‘addr dir #blks cmd-len’)
else \ Use 6-byte form (addr block# #blks dir cmd)
0 ch! (‘addr block# #blks dir)
-rot swap (‘addr dir #blks block#)
cmdbuf 1+ 3c! (‘addr dir #blks)
dup 4 cb! (‘addr dir #blks)
6 (‘addr dir #blks cmd-len’)
then
tuck >r>r (‘addr input? #blks) (R: #blks cmd-len’)
/block * swap cmdbufr>-1 (‘addr #bytes input? cmd cmd-len #retries)
retry-command if ([sensebuf] hw?)
O=if drop then r>drop O
else ()
r>
then (‘actual#)
external

\ These three methods are called by the deblocker.

> max-transfer (--n) parent-max-transfer ;
: read-blocks (addr block# #blocks -- #read) true d# 8 r/w-blocks ;
: write-blocks (addr block# #blocks -- #written) false d# 10 r/w-blocks ;

\ Methods used by external clients

:open (--flag)
my-unit " set-address" $call-parent

\ It might be a good idea to do an inquiry here to determine the
\ device configuration, checking the result to see if the device
\really is a disk.

\ Make sure the disk is spinning.
timed-spin if false exit then
block-size to /block

init-deblocker 0= if false exit then

init-label-package 0= if
deblocker close-package false exit
then

true

l

:close (--)
label-package close-package
deblocker close-package

l

: seek (offset.low offset.high -- okay?)
offset-low offset-high x+ " seek" deblocker $call-method

l

:read (addrlen -- actual-len) "read" deblocker $call-method ;
: write (addr len -- actual-len) " write" deblocker $call-method ;
‘load (addr-- size) "load" label-package $call-method ;

headers

225

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

E.6.6 scsitape.fth

\ SCSI tape package implementing a "byte" device-type interface.
\ Supports both fixed-length-record and variable-length-record tape devices.

" st" encode-string " name" property
"byte" device-type

fload scsicom.fth \ Utility routines for SCSI commands

hex

external

false instance value at-eof? \ Turned on when read-blocks hits file mark.
headers

false instance value fixed-len? \ True if the device has fixed-length blocks.
false instance value written? \ True if the tape has been written.

0O instance value /tapeblock \ Max length for variable-length records;
\ actual length for fixed-length records.

create write-eof-cmd h#10¢,1¢,0¢,0c,1c,0c,
external

\ Writes a file mark.

: write-eof (-- error?) write-eof-cmd no-data-command ;

headers

\ Writes a file mark if the tape has been written since the last seek
\ or rewind or write-eof.

: ?write-eof (--)
written? if
false to written?
write-eof if ." Can't write file mark." cr then
then

l

create rewind-cmd 1c,1¢,0c,0c,0c,Oc,

srewind (--error?) \ Rewinds the tape.
?write-eof
false to at-eof?
rewind-cmd no-data-command

l

create skip-files-cmd h#11c¢,1¢,0c¢,0¢,0c¢,Oc,

: skip-files (n --error?) \ Skips n file marks.
?2write-eof
false to at-eof? (n)
skip-files-cmd 2 + 3c! ()

skip-files-cmd no-data-command (error?)

226

CORE REQUIREMENTS AND PRACTICES

\ Asks the device its record length.
\ Also determines fixed or variable length.

create block-limit-cmd 5¢,0c¢,0c¢,0c¢,0c,Oc,
:2c@ (addr--n) 1+ -c@ c@ bwijoin ;

: get-record-length (--)
6 block-limit-cmd 6 short-data-command if

d# 512 true (blocksize fixed-len)

else (buffer)
dupl+3c@ swap4+2c@ (max-len min-len)
over = (blocksize fixed-len?)

then (blocksize fixed-len?')

to fixed-len? (blocksize)

dup parent-max-transfer u> if (blocksize)
drop parent-max-transfer (blocksize")
then (blocksize)

to /tapeblock O

1

true instance value first-install? \ Used for rewind-on-first-open.

\ Words to decode various interesting fields in the extended status buffer.
\ Used by actual-#blocks.

\ Incorrect length

ili? (statbuf --flag) 2+ c@ h# 20 and 0<> ;

\ End of Media, End of File, or Blank Check

1 eof? (statbuf -- flag)
dup2+c@ h#cOand 0<> swap3+c@ h#fand 8= or

1

\ Difference between requested count and actual count

:residue (statbuf -- residue) 3 +4c@ ;
0 instance value #requested \ Local variable for riw-some and actual-#blocks
\ Decodes the status information returned by the SCSI command to

\ determine the number of blocks actually tranferred.

: actual-#blocks ([[xstatbuf] hw-err?] status -- #xfered flag)

if \ Error (true | xstatbuf false)
if \ Hardware error; none tranferred ()
0 false (Ofalse)
else \ Decode status buffer (xstatbuf)
>r #requested (#requested) (r: xstatbuf)
r@ ili? r@ eof? or if (#requested) (r: xstatbuf)
r@ residue - (#xfered) (r:xstatbuf)
then (#xfered) (r: xstatbuf)
r> eof? (#xfered flag)
then
else \no error, #request = #xfered ()
#requested false (#xfered flag)

IEEE
Std 1275-1994

227

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

then
to at-eof?

l

\ Reads or writes at most "#blks" blocks, returning the actual number
\ of blocks transferred, and an error indicator that is true if either a
\ fatal error occurs or the end of a tape file is reached.

s rlw-some (‘addr #blks input? cmd -- actual# error?)
0 cb! swap (‘addr dir #blks)
fixed-len? if (‘addr dir #blks)

\ If the tape has fixed-length records, multiply the
\ requested number of blocks by the record size.

dup to #requested (‘addr dir #blks)
dup /tapeblock * swap 1 (addr dir #bytes cmd-cnt 1=fixed-len)

else \ variable length (‘addr dir #bytes)

\ If the tape has variable length records, transfer one record.

drop /tapeblock (‘addr dir #bytes)

dup to #requested (‘addr dir #bytes)

dup O (‘addr dir #bytes cmd-cnt O=variable-len)
then (‘addr dir #bytes cmd-cnt bytel)
1 cb! cmdbuf 2 + 3c! (‘addr dir #bytes)
swap cmdbuf 6 -1 (dma-addr,len dir cmd-addr,len #retries)

retry-command actual-#blocks (actual#)

1

\ Discard (for read) or flush (for write) any bytes that are buffered by
\ the deblocker.

: flush-deblocker (--)
deblocker close-package init-deblocker drop

l

external

\ The deblocker package calls max-transfer to determine an appropriate
\ internal buffer size.

: max-transfer (--n)
fixed-len? if
\ Use the largest multiple of /tapeblock that is <= parent-max-transfer.
parent-max-transfer /tapeblock / /tapeblock *
else
ltapeblock
then

l

\ The deblocker package calls block-size to determine an appropriate
\ granularity for accesses.

: block-size (--n)
fixed-len? if /tapeblock else 1 then

l

\ The deblocker uses read-blocks and write-blocks to access tape records.

228

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

\ The assumption of sequential access is guaranteed because this code is only
\ called from the deblocker. Since the SCSI tape package implements its

\ own "seek" method, the deblocker seek method is never called, and the

\ deblocker's internal position only changes sequentially.

: read-blocks (‘addr block# #blocks -- #read)
nip (‘addr #blocks) \ Sequential access

\ Don't read past a file mark
at-eof? if 2drop O exit then (‘addr #blocks)

true 8 r/iw-some (#read)

1

> write-blocks (addr block# #blocks -- #read)

nip (‘addr #blocks) \ Sequential access
true to written? (‘addr #blocks)
false h# a r/lw-some (#written)

1

\ Methods used by external clients
:read (addrlen -- actual-len) "read" deblocker $call-method ;

> write (‘addr len -- actual-len’)
"write" deblocker $call-method (actual-len)
flush-deblocker \ Make the tape structure reflect the write pattern

l

ropen (-- okay?)
my-unit " set-address" $call-parent

\ It might be a good idea to do an inquiry here to determine the
\ device configuration, checking the result to see if the device
\really is a tape.

first-install? if
rewind if
" Can't rewind tape" cr
false exit
then
false to first-install?
then

get-record-length

init-deblocker (okay?)

l

:close (--)
deblocker close-package
?write-eof

0 value buf
h# 200 constant /buf

\ It would be better to keep track of the current file number and

\ just seek forward if the requested file number/position is greater
\ than the current file number/position. Taking care of end-of-file
\ conditions would be tricky though.

229

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

1 seek (byte# file# -- error?)
flush-deblocker (byte# file#)

rewind if 2drop true exit then (byte# file#)

?2dup if (byte# file#)
skip-files if drop true exit then (byte#)
then (byte#)
?2dup if (byte#)
/buf alloc-mem to buf
begin dup 0> while (#remaining)
buf over /buf min read (#remaining #read)

dup O= if 2drop true exit then (#remaining #read)
- (#remaining')

repeat (0)

drop 0

buf /buf free-mem @]
then ()
false (no-error)

:load (loadaddr -- size)

my-args dup if (loadaddr addr len)
$number if (loadaddr)
" Invalid tape file number" cr (loadaddr)
drop 0 exit (0)
then (loadaddr n)
else (loadaddr addr 0)
nip (loadaddr0)
then (loadaddr file#)
0 swap seek if (loadaddr)
" Can't select the requested tape file" cr
0 exit
then (loadaddr)

\ Try to read the entire tape file. We ask for a huge size
\ (almost 2 Gbytes), and let the deblocker take care of

\ breaking it up into manageable chunks. The operation
\ will cease when a file mark is reached.

h# 70000000 read (size)

l

headers

230

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex F
Answers to common questions

(informative)

F.1What is the expected (not required) overall flow of the use of Open Firmware?

At power-on timethe platformand all plug-inoptions do any necessairyternal self-testand initialization. The
scope of Open Firmware begins when the platform starts to determine titpdlOgy,i.e., determine whatevices
are reachabland by whatphysical pathghrough thebus systemThe Open Firmware in the platform builds a
device treedata structure to represent ttopology byasking eactbus node to probe itsethus finding what de-
vices are installed and creatingodes containingheir device names andoroperties. If there arbus bridges
subordinate to those first-level buses, the process is repeated recursively, thus probing deeper into the tree.

“Probing” involvesreadingbytesat designated (but bus-dependent) addresses where deigtesesidethen for
populated addresses, checkihgt anFCode ROMhasbeen located. If so, successibgtesare readfrom the
FCode ROM orthe card and interpreted & ode functiondy the platformfirmware As it runs, thisFCode
programfrom the card creatgwopertiesandmethodsn the current (originally blank) node in tdevicetree. At
any point, this program carause succeedirgytes to bencrementally compiledsather tharinterpreted. Adevice
that might be “interesting” dtoottime would nominally fill inthe full set of properties (vigroperty , 5.3.5.3)
and methods (vieexternal-token , 5.3.3.1)specified by Open Firmware fats device typgsee3.7). Other
devicesthat areless “interesting” aboottime, like a fax modemare only expected to fill intheir “name” and
possiblytheir “reg ” and “interrupts " properties. Noteghat thenode on thedevicetree is not filled in by
platform-based code based data read from the caf®OM, butrather anFCodeprogram is retrieved from the
card and executed, thus filling in the node.

Once the platform’s boot firmware has constructed the device tree and possibly conducted some further level of sys-
tem self-testing, it selectsoot devices based on som@embination of information in the platformisoot ROM,
nonvolatile RAM,and,once selectedhe system boot console. Boot deviaamsist mainly of theonsole display
andkeyboard devicesnd thedevicethat providesthe codeimage beingoooted.The platform’s Open Firmware

polls theconsoleinput device forcharacters, prints output characters to ¢basole displayand calls theload

method of theselected source device tead aclient program into memory. Ifthe load methodcompletes
successfully, the firmware transfers control to the client program.

The client program could immediately take overghistem, wipingawayall Open Firmware structures, orcibuld
be a secondary loadprogram thausesthe facilities of the Open Firmwartient interface(Clause 6)and indi-
rectly the Open Firmware methods of tbevices, to perform various functioasd load successivenages for
portions of the run-time OS.

Ultimately, when the run-time O&sumes control dhe system, it may choose oherit some orall of thedevice
tree information from Open Firmware, or to kebp entiredevicetree aroundor fatal systemerrors orsystem re-
sets. Alternatively, the Oould wipe awall traces of Open Firmwafeom system memorgndconduct its own
system probe, etc.

For a more detailed description on any of these steps, see 4.2, other related ardaxdgfdftbe Open Firmware
standard, or the responses to the following questions.

F.2How does the overall firmware operation work, considering the interactions
between the CPU firmware, the FCode drivers, and the operating system?

Here is an overview dhe operation of a hypothetical compusgstemthat uses Open Firmware. It describes the
interactions among the hardware, flimware, and the operatingystem. We assunthat thesystem in question

231

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

uses the complete set of Open Firmware interfaces. In practice sgstems will choose tonplementonly one or
two of the three Open Firmware interfaces. For ssydtemsthe behaviors of any non-Open Firmware interfaces
may, of course, differ from the behavior described herein.

After the system is poweredn, power-on self-test (POST) code (whabstails areoutsidethe scope otthis stan-
dard) executesgdetermining that theorehardware is operational, th@asses control tthe Open Firmware. The
Open Firmware initializes itsetindany corehardware that iseeded fothe basic operation dhe firmware. This
initialization step includes building the portion of device tredhatrepresents theystem’sbuilt-in devices The
mechanism for accomplishiribis is notspecifiedherein; although a firmwargystemmight choose to use FCode
to represent the built-in part of tlievicetree, that built-inportion could equally well be “hard-coded” as an
internal data structure.

The next step is to augment ttevicetree to includeplug-in deviceslt is here that th®©pen Firmwaredevice

interfacecomesinto play.The firmware scans th&ots of its expansiohbus or buses. For eachrd that itfinds, it

interprets thé=Code progranstored orthat card, resulting in thereation of one or morgevice nodeslescribing
that card. In the case of a card that is a bridge to anotiseian entire hierarchy dévice nodesnight becreated,
perhaps as a result of a recursprecess in whichFCodeprograms on cards subordinatethat bus bridge are
interpreted.(Device nodes foplug-in devices could also be created by samechanism othethan interpreting
FCode programs, for example, by reading bus-dependent standard configuration registers.)

The advantage d¢fCode ighat itsdesign is neithebus-specific, processor-specifigyr operatingsystem-specific,
thus avoiding the need to invent and support a new configuration mechanism for each new bus.

After all of the plug-inslots have been probeithe devicetree contains a complete representatiothefhardware
configuration. Eacldevice nodehas aset of propertieshat describethe static characteristics of tlassociated
device and (optionally) a set wfethodghat the firmware canse to drivehe device.The firmwareselects devices
for its consoleinput andoutput functions, using thdevice node methods to dritke devices,and displays a
banner identifying the system and its configuration.

The firmwareselects a boot devicend usesits device node methods toad a program, perhaps fromveell-
known group of disk sectors. Typicallthe program is an intermediab®ot programwhose job is tdoad the
operating system, which might séored in a disk file. The intermediabeot programwould be responsible for
understanding théle system layouaindfile format used byhat operatingystem.The intermediatéoot program
could use firmware services providedthg Open Firmwarelient interfaceto do things like allocatingnemory
andperforminglow-level disk reads. Thus, the intermedi&i@ot programwould be concerned onlyith knowing
the specifics ofthe file systemformat, and would not need tcknow processor-specific or system-configuration-
specificinformation. This separation of functi@mndresponsibility simplifiegshe design of such progranmmakes
them easier to maintain, and allows the same boot program to be used in different system configurations.

After the bootprogram hasoadedthe operatingystemthe bootprogram can exit if it is no longer needed, or it
can remain resident forovide additionakervices to assishe operatingsystem inits configuration process. For
example, the operatingystemmight wish to take advantage of theoter's knowledge dhe file-system format,
using the booter to load configuration-dependent extension modules before the OS is fully operational.

As the OS is configuring itself, itses firmware services viae Open Firmware client interfaer such purposes
as determining the hardware configuration, displaying progress messadd€perhaps with the help of theoter
program) performing disk or network 1/O.

At somepoint, the operatingystem completegs configurationprocess tahe extentthat it no longemeeds
firmware servicegnd can then reclaimny resources used bye firmware, assumingomplete responsibility for
managing alkystem resources. Oncehdsdone sothe OS must ensutbat thefirmware is not invoked (i.e., by
taking control of traps or interruptsatcould enter the firmwarend by not callingirmware client interfaceser-
viceg. Alternatively, the OS could allothe firmware to remain resideahdoperational by not reclaiming the re-
sources (primarily memorybhat thefirmware is using. Doing sevould allow the OS to continue tavoke

232

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

firmware services as needethe Open Firmware desigassumeghat the operatingystem willnot be making
heavy use ofirmware services oncthe OS isfully operational; however, it is reasonable for an OS to make
occasional use of firmware services. Examples of such occasional uses include the following:

— Sending error messages to a diagnostic console

— Browsing the firmware device tree when a user wishes to inspect the hardware configuration
— Displaying and setting firmwareonfiguration variablesn nonvolatile memory

— Debugging the operating system using Open Firmware’s software debugging features

— Rebooting

Since the Open Firmware execution model assumes a single thread of control, it is the cgystetirig responsi-

bility to ensurehatfirmware client interface servicese called in anannerconsistent with thigxecution model.

Typically, on a multiprocessor systethe firmware initialization, bootingand operatingsystem configuration

steps all execute on a single processor, and the operating system enables multiprocessor mode only after those steps
are complete.

If the client programdesires to take ovéne management oésourceandwishes to continue to usertain non-
memory-allocating services of Open Firmware, it mustthseevicetree client interface functions abme well-
defined point in time to find out abowtll “available " and “existing resourcesand respect Open
Firmware’s use of allocated resources not appearing iratfsldble " properties.

”

Uponreentering Open Firmware via theriter ” or “exit " client interface function, the states of ttesources
are as they were left by Open Firmware and the client program modifications to them via use of the client interface.

The handling of“fatal errors” is implementation-dependebecausethe specification of these errors is
implementation-dependent. For the mesirt, thelSA or platform implementation of Open Firmware should
specifywhich errors it is prepared to handied which it is not,and which errors cause aimternal reset and

which do not. For example, on SPARC implementations, one might expect a watchdog reset to be handled by Open
Firmware withvery little state remainingbut a divide-by-zer@rror or unaligned-access ermight be handled

without resetting all state information.

F.3Which Open Firmware interfaces do | need to be compliant? Can | mix Open
Firmware-compliant interfaces with other existing firmware interfaces?

The three interfacedefined bythis specificationare individually optional. A compliarfirmware implementation
can haveany combination of the three interfaces, depending on the capaldlittegherequirements of the
computer system. Some examples follow.

A general-purpose computer system with an expansion bus, intenadedageneral-purpose operatisgstem (or
perhaps several different operatsygstems) would benefit frowl three of the Open Firmware interfaces. Tee
vice interfacewould allowthe firmware tadentify anduseplug-in devicesadded to theystem viathe expansion
bus.The client interfacewould allowthe operatingsystem to configure itself to use those devices automatically.
The user interfaceiould allow a user osystemadministrator to manage tlsgstemwhen the operatingystem is

not running.

A computer systernwith no expansiorbus wouldnot need theleviceinterface, but it couldtill benefit from the

client interfaceand theuser interface. Although the configuration of a nonexpandafdem is presumably fixed,

an operatingsystemmight still need to determinéhat configuration at run-time, thus letting a single “shrink-
wrapped” operating system work on a variety of different systems within the same “family.” Some of the systems in
thatfamily might be expandabl@ndothers nonexpandable. The single operasiygiem wouldchot need tdknow

any of the hardwareystemconfiguration details in advance. The user interfaoald allowthe user to test the
hardware and to control, for example, which disk boots the operating system.

233

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

An expandable computer systemith a built-in operatingsystem(perhaps an OS iROM) might implement the
Open Firmwaralevice interface directlwithin the OS, givinghat OS thebility to identifyand initialize plug-in
devices on standard buses.

A non-expandablsystemthat is intended toun asingle operatingystemthatuses a proprietary interface to the
firmware might choose to have only the Open Firmware user interface, perhaps for its debugging capabilities.

Many combinations of Open Firmware-compliant interfaces mixed with other proprietary firmware interfaces are
plausible. Furthermore, since each of the Open Firmware interfaces is extensible, an Open Firmware compliant in-
terface can be augmented to support system-spegifidGrements, such 8egacy” busesvith proprietary identifi-

cation mechanisms, other OS-to-firmware interface protoewid, additionaluser interface paradigms, such as
backwards compatibility with a vendor’s pre-existing firmware user interface or graphical user interface shells.

Another possibility would be to implement another client interface “on top of’ the Open Firmware client interface.

F.4What is the distinction between a probe address and a unit address ?

The probe addresss the address of a plug-in card, or equivalently, the address of the slot into which it plugs. The
process of creating one or matevice nodefor a plug-in cardinvolves executing akRCode programBeforethat
FCodeprogram is executedhe firmware system doesot know wherethe devices orthat card aréocatedwithin

the addresspace available tiv. The systemfirmware knows onlythe address of the card itself: thebe address,
which is established bset-args and returned byny-address andmy-space . It is theresponsibility of the

card’'s FCodeprogram toknow the addresses of thdevices orthe card, publishing those addresses imeg *
propertyfor each deviceWithin a given feg ” property, the first such address is thevice node’sinit address

the addresthatidentifies a device nod&he unitaddress of a device ibe addresthat matches when resolving a
pathname (to select a particular device node).

In most caseghe FCodeprogramfor a device(or group ofdevices) doesiot know the device’sunit address di-
rectly. Instead, iknows how to calculatthe unitaddress from th@robe address. lgeneral, thatalculation
depends both on the design of the particular bus and on the details of the individual card.

As a particularly simple example, consider an SBus card [see B2{wutlogically independentlevices, device A
anddevice B, orit. According to theSBus specification, each SBus dhais itsown 28-bit address space, separate
from the addresspaces of other slot¥he completeunit address of a device on an SBus consists of anglober
and anoffsetwithin thatslot’s 28-bit spaceThe probe address of an SBus slotlie slot numbeand anoffset of
zero. (Coincidentallythat probe address aldmppens to be the address ofSBuscard’sFCodeprogram; that is
not necessarilyhe case forother buses.) In our example, let us asstimgédevice A begins atffset (hex) 20000
within the slot’s address spa@ddevice B begins atffset(hex) 30000. Th&Codeprogramwould calculate de-
vice A’s unit address by adding 20000 to {hrbe addressffset(which happens to be zero f8Bus)returned by
my-address , and using thelot number returned byy-space . For SBus, in whichhe addressing istrictly
slot-basedthe slot number of thprobe address is alwayise same as the slot number of tievices inthat slot.
That observation mayppear to be trivial, but it is not necessarilyf@ootherbuses. Some buses have separate
configuration, memory, and I/O address spaces. The configuration space is usually addressed with something like a
slot number, while the other addresgmces, in which individualevices residenight have no fixed relationship
with slots.

In general, an arbitrarilgomplex calculation, gssiblyinvolving dynamic address allocatiomight benecessary
in order to determine the urdtddress of a particulalevice on ararbitrary busHowever,when selecting thanit
address represention for a new bus, it is generallgoalidea tochoose a fornthat doesnot change when other
cards are installed aemoved,thus ensuring that the pathname of a particdirice doesiot depend on the
presence or absence ather unrelatedlevices.This argues against these of dynamic allocation fahe unit
address portion of device’s address (however, on sobusesheremay be no choice). Nothat the unitaddress

is not theonly deviceaddresghat can bgublished in areg ” property; theunit address is the first such address,

234

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

but therecan be additional onesnd therecommendation against dynamic allocatdwesnot apply to those
others, which do not appear in pathnames.

One additional consideration results froevice nodeshathave no feg ” properties,and thushave no fixedunit
address. A pathname selecting such a wildcerdk can still have aunit address component; a wildcard node
matches anynit addressi-or an instance created from such a wildcard mamghunit returns the uniaddress
from the pathname, rather than the unit address fronrélge”property.

F.5Do calls get passed from driver to driver down the device tree, or does the
platform’s boot firmware “talk” directly to the leaf driver?

When the platform’dootfirmware or a client progranopensa device drivey it gets an instanceandlefor the
leaf driver itself (e.g.the “enet " device driver in figure F.1). Open instancese also created for each of the
drivers in the path to tHeaf node giving each node an opportunity to prepare the communigaditinto its child
and a hadle to invokethe services ofts parent. The high-levelodetalks directly tothe leaf node,and theleaf
node asks its parent for help (via the paremithod$when needed.

F.6Where is the driver’s state information kept? How does it remember what it
learned or set up at probe time and between calls to its methods?

There are generally thrg#aces where a driver stores state informatiba:device tree static variablesand the
openinstance context.

The devicetree should be used to stgyeopertiesand methods—things that are of general, long-term interest to
other entitiesand to the driveitself, related to what the driver can dmw tolink with it, etc. If a driver must
coorinate its activities with other nodes the sameype of devicqe.g., identicaLAN cards in separate slots), it
must rendezvous by searching the device tree, since thisasljhmechanism fosharing information amonigee
nodes. Also, whenever a driver is calledlwayshasaccess tdts own node, to dandleback toits parent'snode

on thedevicetree, and to thdevicetree as a whole, giving #ccess tehe parent'servicesandknowledge of its
current location in the platform®pology. Since some systems may choose to Weegevicetree around when
the run-time OS is active, the amount of memory that a driver attaches to the device tree should be small.

Static variables arbasically devicdree node-global variables. An instance of each variable is set up when the
node is probednd it staysaround as long as Open Firmware is active. Since anig node-globaland not
platform-global, it cannot be used dbare information among instances of the same dfdremultiple, identical
devices. Itanain use is for long-ternprivate datastructures. Again, sinceome systems may choose to keep the
Open Firmware around while the run-time OS is running, the amoum¢mbry devoted tetatic variables should

also be minimized.

Open-instance context memory is providedhe driverfor each currently open instanbandle. It is created at
open-timeand destroyed at close-timdhis is where the bulk of the driver’'s information should normally be
stored. Itsmain use is for variables, queues, buffers, dfttat areusedduring andbetween invocations of the
driver’'s methods related to the current open instance.

F.7What is a support package ?

Open Firmware assumes relatively matdewice driversKeyboardsare expected to provide ISO 8859-1 (Latin)
charactergsee 1SO 8859-1 : 1987 th1),console displayareexpected to take thesedesanddisplaythem, and
boot image source devicaseexpected tdoad the related imagedBut many of these devices have seviaie op-
erations in common. ManyAN devicescanusethe saméboot protocols. Many console devices ggaple pixel
frame-buffers for which softwamaust “paint” characters. Rath#ranrequire the entire functionalitipr each de-
vice to reside irits ROM, Open Firmware provides feupport packagethat arelocated inthe platform’s ROM
and shareable by all interested devices, such as library routines.

235

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

To use a support package, a driver locéiespackageoff the rootand opensit (with open-package). This
effedively makeghe open instance of the support package a child of the driver itself. For example, thieodFTP
support package can be openedhw®/“‘enet ” driver, as shown in figure F.1. Therfet ” driver passesheload
command on to thwad methodfor the “obp-tftp " support package. The support package performsotae
operation, invoking theead andwrite methods of its parent, theriet " driver, to send protocol packets and
receive protocol and load data over the LAN.

An Instance Chain Device Tree

data

my-parent

data

my-parent

ihandle% data

my-parent

data

The top three instances in the chain were opened from the pathname,
e.g., "/sbus/enet”, as with open-dev. Client programs or other "applications"
invoke the driver via the ihandle returned by open-dev.

The bottom instance in the chain was opened from the package "obp-tftp",
as with open-package. The instance that opened the package is responsible
for storing its ihandle, allowing calls in the downward direction. Upward calls
are done with the ihandle returned by my-parent.

Figure F.1—Support package relationships

F.8I’'m confused by the display drivers: Are they simple frame-buffers or do they
contain their own fonts, etc.?

They can be either. Again, as mentionaldove,Open Firmware assumes fairly matutevice driversthat can
directly display characters. Therefore, a display withoitg fontsand renderingcapability wouldhandle the
characters directlyHowever,there areseveral apport packagesupplied forthe simplerframe-buffer display
devices. In figurd-.1, thedisplay drivercanwrite a buffer ofcharacters by invoking theéraw-character

methodof thedisplay low-level interface support packagkich in turn usesthe services othe 8-bitframe-buffer
support routines to write the character pixels back into the parent’s (i.e., the simple display driver’s) frame-buffer.
F.9What are the relationships among address types?

In general, eaclbus in a systenmas itsown, possibly orthogonal address spatke number of bitand the
assignment of values for eadhay vary. Some buses haseparate memorgnd I/O register address spaces.
Commonly, the system CPU is served by memory management uniiiU) that creates a hugdogically
contiguous virtualmemory space bynapping regions of virtuainemory onto dynamically reassigned physical
RAM pages. (Noticehat FCode programsiever directly use any of these address formats. Instead addresses are
used as parameters to Open Firmware interface routiaémay translate their interpretation as appropriate for

the specific hardware platform.)

In this document, addresses directly used by the driver are referreditivalsaddressesTypical access to system

memory is via avirtual address, whicimay or maynot involve mapping to the physic&®AM pages by atMMU,
depending on how the given platform operates during boot time.

236

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Virtual addressearealso used byhe driver toaccessard registers. Consider the example in figure F.2. In order
for the driver to write a control register on tNetwork I/O card, the virtual addresssed bythe driver must be
mapped onto the I/®us address valudhat will select the targetedeviceregister when it is asserted on the
directly connected expansion I/O bus. Setting up this mapping genavallyescalling thedevice driverfor each

bus bridgestarting at théottom ofthe treeandworking up, mapping from onleus’s address spacettte next,
andpossiblysetting up mapping registers in eduls bridge to suppothe driver'saccessThe driverfor the top

bus bridge, in conjunctiowith the platform’sfirmware, finally establishes the mapping into the driver’s virtual
address space.

Physical addresses are generally used by an 1/O card to access system memory. In order for the Network 1/O card in
figure F.2 to travers®MA data structures isystem memorythe driver must pass anitial pointer to the I/O

card and linktogether the data structures using addvassesthat arecard-relative: i.e.memory address values

that will map to the propersystem memory locationwhen the card asserts them on disectly connected
expansion I/O busThe driverwould set up thes#/O card-relative addresses #dlows. First it would use
dma-alloc to allocate the one or more majalocks in system memorthat will contain the data structures.
dma-alloc returns a virtual address, V0. Next, the driveruld call dma-map-in in order to translate its

virtual address for each overdllock into the corresponding card-relative, IlDs base addresB0. Finally, the

driver can translatany of its pointers to a datzbject inthe memoryregion, into an 1/O address valtigat is

usable by the card via simple byte math: P1 = PO + (V1 — VO0).

Incidentally, processor caches, if any, tioe DMA memoryregion ardlushed bydma-map-in . This istoo early
in the abovescenarios, since the driver is still writing into tD®A data structure®roperly speaking, when the
driver is done writing into th®MA structuresand before itsends a command to the I/O card relatedhese
structures, it should do @ma-sync to flush theprocessor’'s caches out to system memory, wtiezecard can
“see” the most recently written values.

] I:l Dohulay, Sbroc b= I

Primary 1A Bus

Expansion
Bus Brdge

Expan=ion O Bus

237

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Figure F.2 —Addressing relationships

F.10 Does Open Firmware support only Ethernet/IEEE 802.3 [B3]?

Historically, OpenBoot systems haweainly worked overEthernet networks. Therefore, theetwork " device
typefor these devices is more develoedl there arenore support packagetor the relatedprotocols.However,
any network link type can be accommodated in one of the following three ways:

— Manylink typesare similar enougprotocol-wisethatthey can adapthemselves tohe current Ethernet/IEEE
802.3 interface, providing link-related translations as appropriate. These linksse#ime existing support
packages (e.g.pbp-tftp ").

— Any link-type can be used for booting using the Open Firmware interfaces, as long as they don’t require the use
of the existing support packagés Ethernet/IEEE 802.3. Thimad commandcomes directly tdhe driver
anyway.

— Future “network-XXX” device typesare expected to be defined. An attractive work iterould be a more
“generic” network link interface. This would support a suite of load protocol support patckagesuld work
with almost any link.

F.11 Does Open Firmware expect that a system has a platform-global network
MAC address?

No. The ‘local-mac-address " property is used initially to infornthe platform of theLAN card’s factory-
default MAC address. Thmac-address methodis used bythe LAN card’s driver to determine whether or not

to override thefactory presetwith an alternative value. It is up to the platform to determine what MAC address
values should be used by specific LAMrds. These could be left Hteir factory settings, overridden from
configuration tables, or set to a machine-global MAC value, if appropriate.

F.12 Does the ROM in a plug-in card contain ASCII Forth code?

Not really. Onlythe humaruser interface usdorth directly in ASCII formThe ROM on aplug-in card contains
FCode. FCode is semanticakymilar to Forthsource code, buhe representation is different. Whereas Forth
source code igrritten as a series of human-readable text strifGede is a series of binabyte codes.The set of
predefined FCode byte codes encompasses most of the core words of ANSI X3.215-1994 (omitting dadytthose
wordsthat are meaningfudnly for Forth source code iiits text form)andadds additional functionspecific to the
Open Firmware environment. developer typically writes akRCode programin Forthsource form (ASCII text),
which is then translated into the FCode bytes tpkanizemprogram, thus producing the image that is stored in the
card ROM.

During thedevelopmenanddebugging phase, d&Codeprogramdoesnot necessarily need not be convefftedh
source form to binary form. If an Open Firmware user interface th@h-irmware Debuggingommand groups
available, thd=Codeprogram can beéested directly in source forrThe tokenization stepould then bedelayed
until the program is fully debugged and ready for installation on production units.

F.13 How does Open Firmware pass interrupts to the device driver?

It doesn’t! Open Firmware is based omnay simple, boot-time 1/0 model. I/@evicesare polled for completion.
The interruptspecifications in Open Firmwaie mainlyused to pass systeimformation to the run-time OS.
Also the process model is single-threaded; theoalis one, non-preemptgarogram running at a timé&or multi-
CPU machines, only one processor is assumed to be actively running Open Firmware at boot-time.

238

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

F.14 Can an Open Firmware firmware design be undermined by a provision
added by a new Instruction Set Architecture (ISA) or bus annex?

Drivers forplug-in I/O cards shouldse onlythe FCode numberslocumented irthis Open Firmwargocument,
all of which are required inonforming platformsNew ISA specifications should not addttas list, since drivers
written usingnew FCode numbers woulebt port to other ISAs. Similarly, I/O cardsd theirdrivers shouldnly
have tocomply with the busannex thafpresents the requiremerfts the bus towhich the 1/0O card igirectly
attached.

However, inplatforms with multiple-bus hierarchies, as in figure F.2, the hardewadedriverdesign of the bus
bridgesand theirdrivers must ensurthat all Open Firmwareand bus annex facilities ar@ccessible when bus
transactions must traverse intermediatses. Irother wordsthe expansiomus bridge in figuré.2 must ensure
that all Open Firmware facilities can be successfully passed through the primary I/O bus to the expansion 1/O bus.

239

CORE REQUIREMENTS AND PRACTICES

Annex G
Summary lists

(informative)

Thefollowing summary listareprovided forthe reader'sonvenience. These lisése not definitive; in thevent
of discrepancies betwed¢hem and the informatiooontained elsewhere ithis document, the other information

has precedence.

G.1

auto-boot?
boot-device

boot-file
diag-device
diag-file

diag-switch?
fcode-debug?
input-device
nvramrc
oem-banner
oem-banner?
oem-logo
oem-logo?
output-device
screen-#columns
screen-#rows
security-#badlogins
security-mode
security-password
selftest-#megs
use-nvramrc?

Configuration variables

(-- auto?)
(-- dev-str dev-len))

(-- arg-str arg-len)
(-- dev-str dev-len))
(-- arg-str arg-len)

(--diag?)
(-- names?)
(-- dev-str dev-len)

(-- data-addr data-len)
(-- text-str text-len)
(-- custom?)

(-- logo-addr logo-len)
(-- custom?)

(-- dev-str dev-len)
(-n)

(-n)

(-n)

(-n)

(-- password-str password-len)

(-n)

(-- enabled?)

G.2 Assigned FCode numbers

0x00 end0 OX1A j

0x01- Beginning codes of 2-byte | 0X1B b(leave)
OxOF Fcode sequences 0x1C b(of)
0x10 b(lit) 0x1D execute
0x11 p() OX1E +

0x12 b(") Ox1F -

0x13 bbranch 0x20 *

0x14 b?branch 0x21 /

0x15 b(loop) 0x22 mod
0x16 b(+loop) 0x23 and
0x17 b(do) 0x24 or

0x18 b(?do) 0x25 xor
0x19 i 0x26 invert

IEEE
Std 1275-1994

Itrue , boot automatically after power-on oeset-all

Defauttevice-naméor boot , if diagnostic-mode? is
false

Defau#trgumentdor boot , if diagnostic-mode? is
false

Defauttevice-naméor boot , if diagnostic-mode? is
true .

Defau#trgumentdor boot , if diagnostic-mode? is
true .

Iftrue , diagnostic-mode? returnstrue .

Ifrue , save names for FCodes withaders .

Default console input device.

Contents of Heeipt

Contain custdbanner text, enabled bgem-banner? .

Itrue , banner displays custom messagedem-banner .

Contain custom logo bamner , enabled byem-logo? .

Itrue, banner displays custom logo ioem-logo .

Default console output device.

Maximum number of columns on console output device.
Maximum number of rows on console output device.
Contain total count of invalid security access attempts.
Contain level of security access protection.

Contain security password text string.
Number of megabytes of memory to test.
Ifrue , thescriptis evaluated at system start-up.

0ox27 Ishift
0x28 rshift
0x29 >>a
Ox2A /mod
0x2B u/mod
0x2C negate
0x2D abs
Ox2E min
Ox2F max
0x30 >r
0x31 r>
0x32 r@
0x33 exit

241

IEEE
Std 1275-1994

0x34 0=
0x35 0<>
0x36 0<
0x37 O<=
0x38 0>
0x39 0>=
0x3A <
0x3B >
0x3C =
0x3D <>
Ox3E u>
Ox3F u<=
0x40 u<
0x41 u>=
0x42 >=
0x43 <=
0x44 between
0x45 within
0x46 drop
0x47 dup
0x48 over
0x49 swap
Ox4A rot
0x4B -rot
0x4C tuck
0x4D nip
OX4E pick
Ox4F roll
0x50 ?dup
0x51 depth
0x52 2drop
0x53 2dup
0x54 2over
0x55 2swap
0x56 2rot
0x57 2/
0x58 u2/
0x59 2%
Ox5A /c
0x5B w
0x5C /L
0x5D /n
Ox5E cat
Ox5F wa+
0x60 la+
0x61 na+
0x62 char+
0x63 wal+
0x64 lal+
0x65 cell+
0x66 chars
0x67 Iw*
0x68 /I*
0x69 cells
Ox6A on
0x6B off
0x6C +1
0x6D @
Ox6E 1@
Ox6F w@
0x70 <w@
0x71 c@

242

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

0x72
0x73
0x74
0x75
0x76
ox77
0x78
0x79
Ox7A
0x7B
0x7C
0x7D
OX7E
OX7F
0x80
0x81
0x82
0x83
0x84
0x85
0x86
0x87
0x88
0x89
Ox8A
0x8B
0x8C
0x8D
Ox8E
Ox8F
0x90
0x91
0x92
0x93
0x94
0x95
0x96
0x97
0x98
0x99
Ox9A
0x9B
0x9C
0x9D
Ox9E
Ox9F
0xAO0
OxAl*
0xA2
0OxA3
OxA4
0OxA5
0OxA6
OxA7
0OxA8
0xA9
OxAA
OxAB
OxAC
OxAD
OXAE
OxAF

!

1!

w!

c

2@

2!
move
fill
comp
noop
Iwsplit
wljoin
Ibsplit
bljoin
whbflip
upc
Icc
pack
count
body>
>body
fcode-revision
span
unloop
expect
alloc-mem
free-mem
key?
key
emit
type
(cr

cr
#out
#line
hold
<#
u#>
sign
u#
u#s

u.

u.r

I

.S
base
convert
$number
digit
-1

0

1

2

3

b

bs

bell
bounds
here
aligned
whbsplit

0xBO
0xB1
0xB2
0xB3*
0xB4*
0xB5
0xB6
0xB7
0xB8
0xB9
OxBA
0xBB
0xBC
0xBD
OxBE
OxBF*
0xCO0
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6
0OxC7
0xC8
0xC9
OxCA
0xCB
0oxCC
0xCD
OxCE-
OxCF
0xDO
0xD1
0xD2
0xD3
0xD4
0xD5
0xD6-
0xD7
0xD8
0xD9
OxDA
0xDB
oxDC
0xDD
OxDE
OxDF-
OxEF
OxFO
OxF1
OxF2
OxF3
OxF4-
OxFB
OxFC
OxFD
OXFE*
OxFF
0x100
0x101
*

bwjoin
b(<mark)
b(>resolve)
set-token-table
set-table
new-token
named-token
b(:)

b(value)
b(variable)
b(constant)
b(create)
b(defer)
b(buffer:)
b(field)
b(code)
instance
Reserved
b(;)

b(to)

b(case)
b(endcase)
b(endof)

#

#s

#>
external-token
$find
offsetl6
evaluate

Reserved

um*
um/mod

Reserved
d+

d-
get-token
set-token
state
compile,
behavior

Reserved
startO
startl
start2
start4

Reserved
ferror
versionl
4-byte-id
endl
Reserved
dma-alloc

CORE REQUIREMENTS AND PRACTICES

0x102
0x103
0x104
*

0x105
0x106

*

0x107

0x10E
0x10F
*

0x110
0x111
0x112
0x113
0x114
0x115
0x116
0x117
t

0x118
*

0x119
Ox11A
0x11B
0x11C
0x11D
Ox11E
Ox11F
0x120
0x121
0x122
0x123
*

0x124
0x125
0x126
0x127
0x128
0x129

0x12F
0x130
0x131
0x131

O0x14F
0x150
0x151
0x152
0x153
0x154
0x155
0x156
*

0x157
0x158
0x159
Ox15A
0x15B
0x15C
0x15D

my-address
my-space
memmap

free-virtual
>physical

Reserved

my-params

property
encode-int
encode+
encode-phys
encode-string
encode-bytes
reg

intr

driver

model
device-type
parse-2int
is-install
is-remove
is-selftest
new-device
diagnostic-mode?
display-status
memory-test-suite
group-code

mask
get-msecs
ms
finish-device
decode-phys

Reserved

map-low
sbus-intr>cpu

Reserved

#lines

#columns

line#

column#

inverse?
inverse-screen?
frame-buffer-busy?

draw-character
reset-screen
toggle-cursor
erase-screen
blink-screen
invert-screen
insert-characters

Ox15E
O0x15F
0x160
0x161
0x162
0x163
0x164
0x165
0x166
0x167

0x169
O0x16A
0x16B
0x16C
0x16D
0x16E
O0x16F
0x170

0x17C
*
0x17D

Ox17F
0x180
0x181
0x182
0x183
0x184
0x185
0x186

0x187

0x188
0x189
O0x18A
0x18B
0x18C

0x18F
0x190

0x196
0x197

O0x19F
0x1A0
*

O0x1A1
0x1A2

0x1A3
Ox1A4
0x1A5

0x200
0x201
0x202
0x203
0x204

delete-characters
insert-lines
delete-lines
draw-logo
frame-buffer-adr
screen-height
screen-width
window-top
window-left

Reserved

default-font
set-font
char-height
char-width
>font
fontbytes

fbl - routines

Reserved

fb8-draw-character
fb8-reset-screen
fb8-toggle-cursor
fb8-erase-screen
fb8-blink-screen
fb8-invert-screen
fb8-insert-
characters
fb8-delete-
characters
fb8-insert-lines
fb8-delete-lines
fb8-draw-logo
fb8-install

Reserved

VME-bus support

Reserved

return-buffer
xmit-packet
poll-packet

Reserved
mac-address

Reserved

device-name
my-args
my-self
find-package

0x205
0x206
0x207
0x208
0x209
0x20A
0x20B
0x20C
0x20D
0x20E
0x20F
0x210

0x211
0x212

0x213
0x214
0x215
0x216
0x217
0x218
0x219
Ox21A
0x21B
0x21C
0x21D

Ox21E
Ox21F
0x220
0x221
0x222
0x223
0x224
0x225
0x226
0x227
0x228
0x229

0x22A

0x22F
0x230
0x231
0x232
0x233
0x234
0x235
0x236
0x237
0x238

0x239
*

0x23A
0x23B
0x23C
0x23D
0x23E
0x23F

IEEE
Std 1275-1994

open-package
close-package
find-method
call-package
$call-parent
my-parent
ihandle>phandle
Reserved
my-unit
$call-method
$open-package
processor-type

firmware-version
fcode-version

alarm
(is-user-word)
suspend-fcode
abort

catch

throw
user-abort
get-my-property
decode-int
decode-string
get-inherited-
property
delete-property
get-package-property
cpeek

wpeek

Ipeek

cpoke

wpoke

Ipoke

Iwflip

Ibflip

Ibflips
adr-mask

Reserved

rb@
rb!
w@
rw!

@

rl!
whbflips
Iwflips
probe

probe-virtual

Reserved
child

peer
next-property
byte-load
set-args

243

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:
0x240 left-parse-string | 0x600 0x800
0x241 Vendor FCodes Local FCodes

Ox7FF OXFFF

- Reserved
Ox5FF

* These are historical FCodes.
T These are obsolete FCodes.

244

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

Annex H
Historical notes

(informative)

H.1 Overview and references

This Open Firmware standard is based on the following documents:
— OpenBoot Command ReferelfiBg]
— Writing FCode Program@B7]

H.2 Obsolete FCodes

H.2.1 Previously implemented FCodes

Pre-Open Firmware versions of SBus [B2hware have used the following FCodes. None of theagerequired for
a Open Firmware implementation; howev@imeimplementationsnay choose to support these tioe purpose of
backwards compatibility.

H.2.1.1 Generic 1-bit frame-buffer support

The “‘fbl ” generic frame-buffesupport packagemplements thedisplay device low-level interfaces for frame-
bufferswith onememory bitper pixel. It applie®nly to framebuffersorganized as a series of doublets viiih-
endianaddressing, with the most significant bit withirdeublet corresponding tihe leftmost pixel within the
group of sixteen pixels controlled lthiat doublet. Innormal (not inverseyideo mode, background pixels are
drawn with zero-bits, and foreground pixels with one-bits.

The working groupcommittee feelghat thisclass of devices is toestricted tqustify requiring the presence of
this set of support routines in all implementations of Open Firmware. Furthermore, the working group thedieves
the number ohew deviceshatfit into this category isdwindling rapidly.However there are a number of existing
SBus deviceshat use these support routines. An implementatiat intends teupport those existindevices is
advised to implement the followirfgCode functions

Execution offbl-install installs the other routines as thehaviors ofthe correspondindpw-level display
device interfacedefer words, and setsthe values ofscreen-height , screen-width , window-top
window-left |, #lines , and#columns .

fb1-blink-screen (--) F,O 0x174

Implement the fb1 ” blink-screen function.

Typically implemented as: fb1-invert-screen fbl-invert-screen

NOTE—Typical generic implementations of this function are likely to be quite slow, since they probably will access each
pixel on the screen four times. For most devices, there is a device-specific implementatioblfoktbereen
function that is much faster, for example disabling video output for about 20 ms. It is recommended that such device-

specific implementations be used instead of the gefiEriblink-screen function.

fbl-delete-characters (n--) F,O 0x177
Implement thefbl ” delete-characters function.

fb1-delete-lines (n--) F,O 0x179
Implement thefbl ” delete-lines function.

245

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

fbl-draw-character (char --) F,O 0x170
Implement the fb1l ” draw-character function.

fbl-draw-logo (line# addr width height --) F,O Ox17A
Implement thefbl ” draw-logo function.

fbl-erase-screen (--) F,O 0x173
Implement thefbl ” erase-screen function.

fbl-insert-characters (n--) F,O 0x176
Implement the fb1 ” insert-characters function.

fbl-insert-lines (n--) F,O 0x178
Implement the fb1 ” insert-lines function.

fbl-install (‘width height #columns #lines --) F,O 0x17B

Install all built-in generic 1-bit frame-buffer routines.

Install the fb1 " generic 1-bit frame-buffer routines into the display device intefi@fer words, configuring the
“fbl ” routines for a frame-buffemneightpixels high, with successive scan livggth pixels apart.

#columnsand#linesindicate the maximum number of text columns and lines that the device is capable of
supportingécolumnsand#linesusually depend upon the width and height of the font to be used, among other things.)

width is the difference between the starting memory addresses of two consecutive scan lines in the frame-buffer,
multiplied by eight (the number of pixels per byte). For frame-buffers where all memory locations correspond to
displayable pixels, this is the same as the width of the screen in pixels.

heightis the height of the display in scan lines.

Setscreen-width to thewidth argumentscreen-height to theheightargument#columns to the minimum of
#columnsandscreen-#columns |, and#lines to the minimum o#linesandscreen-#rows

Setwindow-top andwindow-left to center the text region on the screen (the calculation typically involves

#columns , #lines , char-width | char-height , screen-width , andscreen-height). The calculation

assumes thatidth pixels per scan line are displayable. If some are not (for example, some number of pixels at the right of
the display), it is the responsibility of the display driver to adjvistiow-left to locate the text region in an

appropriate place afté1-install returns.

Usage restriction: char-width ~ andchar-height must be set beforf@l-install is executed; otherwise, the
centering is likely to be incorrect.

See also:set-font

fbl-invert-screen (--) F,O 0x175
Implement the fbl ” invert-screen function.
fbl-reset-screen (--) F,O 0x171

Implement the fb1 ” reset-screen function.

This routine is usually implemented as a no-op.

fb1-slide-up (n--) F,O 0x17C
Like fbl-delete-lines , but do not erase lines.
Deleten lines at and below the cursor line, as vdéiete-lines , except do not erase thdines at the bottom of the
screen. The typical use for this command is to scroll the enable plane for frame-buffers with separate overlay and enable
planes.

fb1-toggle-cursor (--) F,O 0x172

Implement the fb1 ” toggle-cursor function.

246

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

H.2.1.2 Other previously implemented FCodes

dma-alloc (#bytes -- virtual) F,O 0x101
Used to allocate some memory for DMA or other purposes.
Some existing FCode programs asea-alloc to allocate memory for general purposes not intended for DMA.
Programs using this technique are not guaranteed to work.
Equivalent to: " dma-alloc" $call-parent
See: alloc-mem

driver (addr len --) F,O 0x118
Creates therfame” property.

Removes the manufacturer name prefix from the saddy len then creates thendme” property from the remainder of
the string. Previous versions of SBus firmware have implemented the process of removing the manufacturer name prefix
in inconsistent ways; thus, there is no single definitiodrivier that will ensure backwards compatibility in all cases.

NOTE—SBus [B2] developers were advised to avoid the use of this FCode function when the inconsistency was
discovered, and the committee believes that its use has largely been eliminated.

fcode-version (--n) F,O 0x212
Return revision level of device interface (obsolete).

This obsolete FCode has a behavior simildcoale-revision

firmware-version (--n) F,O 0x211
Return revision level of the OpenBoot Firmware.

Encode the value as two doublets, holding the major/minor release number. For example, if the release number was 2.12,
return the value 0x0002.000C.

The allocation of version numbers is determined by the implementor of the Open Firmware and is not specified in this
document.

This FCode is obsolete.

group-code (--a-addr) F,O 0x123
Group offset for memory-test-suite (obsolete).

Avariable containing a group offset for distinguishing various self-tests in early versiomsnobry-test-suite
The value igroup-code is added to the code# for individual tests, and the sum is displayed with
display-status

intr (sbus-interrupt# vector --) F,O 0x117
Creates theifitr " property.

See the description of thentr " property for more details.

memmap (physoffset space size -- virtual) F,O 0x104
Creates a memory mapping for some locations (obsolete.)

my-params (--addrlen) F,O 0x10F
Contents of custom parameters (obsolete).

addris the address anén the length of the value of thedrams ” property of theactive packageor a zero-length
string if theactive packagéas no params "property.

“params ” S,0
Standardgroperty nameo set device-dependent modes.

This property, if present, holds the value to be passed by the obsoleterfGpdeams .

247

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

>physical (virtual -- physoffset space) F,O 0x106
Return physical address for virtual address (obsolete).

Given a virtual address, return the mapped physical address as a (physoffset space) pair.

probe (‘arg-addr arg-len reg-addr reg-len fcode-addr fcode-len --) F,O 0x238
Execute FCode at given location (obsolete).

Execute FCode at location given fopde-addr fcode-lerpassing argumengsg-addr arg-lenand with registerseg-addr
reg-len fcode-addy fcode-lenandreg-addr, reg-lenare the text representations of physical addresses within the address
space of thactive package

probe-virtual (‘arg-addr arg-len reg-addr reg-len fcode-addr --) F,O 0x239
Execute FCode at given location (obsolete).

Like probe , but FCode is located at virtual addréssde-addr

processor-type (-- processor-type) F,O 0x210
Returns type of CPU (obsolete).

Returns the type of processor (instruction set architecture). Ox5 indicates SPARC, other values are not used.

H.2.2 Non-implemented FCodes

Pre-Open Firmwarsystemsassigned thdollowing FCodenumbers, but the functionsere not supported. To
avoid any possible confusion, however, these FCode numbers are reserved and should not be reassigned.

adr-mask 0x229 poll-packet 0x1A2
b(code) OxBF return-buffer 0x1A0
4-byte-id OxFE set-token-table 0xB3
convert OxAl set-table 0xB4
frame-buffer-busy? 0x156 VME support words 0x190-0x196
xmit-packet Ox1A1l

H.3 Obsolete properties

Pre-Open Firmware versions of SBus [B&hware usedthe following properties. None of thesge requiredor a
Open Firmware implementation; howeveomeimplementationsnay choose to support these the purpose of
backwards compatibility.

“params ” S,0
Standardgroperty nameo contain my-params data (obsolete).
Prop-encoded-array:
Data array, encoded widncode-bytes
This property, if present, holds the value to be passed by the obsolete FCode my-params.

“scsi-initiator-id " S,0
Standardgroperty nameo contain SCSI host address (obsolete).

prop-encoded-array
Integer, encoded wittncode-int

This property, if present, contains an integer 0—-15 indicating the address of the main SCSI host adapter of the system.

248

CORE REQUIREMENTS AND PRACTICES

IEEE
Std 1275-1994

H.4 New FCodes and methods

Most pre-Open Firmware systems do not implement the following FCodenethdds

Not the same as old (now calledu#).
Not the same as oké> (now calledu#>).
Not the same as olés (now calledu#s).

could be used.
could be used.

On pre-Open Firmwaré,byte-load" $find
On pre-Open Firmwaré,(compile)" $find

On pre-Open Firmware, thevflip " tokenizer macro was used.
On pre-Open Firmwaré,set-args" $find could be used.

On pre-Open Firmwaré,state” $find could be used.

FCode# Name Comments
OxC7 #

0xC9 #>

0xC8 #s

OxDE behavior
0x23E byte-load
0xDD compile,
0x128 decode-phys
OxDA get-token
method encode-unit
0x227 Ibflip

0x228 Ibflips

0x229 Iwflip

0x23D next-property
0x23F set-args
0xDB set-token
0xDC State

0x89 unloop

H.5 New properties

Standard meanings for most of the followprgpertieswere introduced by this standard:

“#address-cells
“address-bits

“bootargs
“bootpath

“character-set

”

”

“compatible
“max-frame-size

“#size-cells

“status
“stdin
“stdout

”

”

”

”

”

”

”

”

Standardpropertyto define the package’s address format.
Standardpropertyto indicate number of network address bits.
Standardpropertycontaining the chosen boot commamguments
Standardpropertycontaining the chosen bodgvice-path
Standardpropertyto specify the character set for this device.
Standardpropertyto define alternaterfame” property values.
Standardpropertyto indicate maximum allowable packet size.
Standardpropertyto define the package’s addresgeformat.
Standardpropertyto indicate the operational status of this device.
Standardpropertycontaining thehandleof the console input device.
Standardpropertycontaining thehandleof the console output device.

H.6 New user interface commands

Most pre-Open Firmware systems do not implement the following user interface commands.

249

IEEE
Std 1275-1994

apply (... "method-name< >device-specifier< >" -- ??7?)

char
[char]

close-dev
$create

environment?

fm/mod (dn--rem quot)

noshowstack (-)

parse (delim "text<delim>" -- str len)

parse-word ("text< >" -- strlen)

(patch) (new-n1 num1? old-n2 num2? xt --)

postpone (C: [old-name< >] --)
(...--?2??)

recurse (...--?2?27?)

s" ([text<">] -- text-str text-len)

s>d (nl--d1)

sm/rem (dn--remquot)

status (-)

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

("text< >" -- char)
(C: [text< >] --)

(--char)
(ihandle --)
(E: -- a-addr)

(name-str name-len --)
(str len -- false | value true)

H.7 FCode name changes

Execute named method in the specified package.
Generate numeric code for next character from input buffer.
Generate numeric code for next character from input buffer.

Close device and all of its parents.
Caltreate ; new name specified byame string

Return system information based on input keyword.
Dividel by n.
Turn offshowstack (automatic stack display).
Parse text from the input buffer, delimitedédym
Parse text from the input buffer, delimited by white space.
Change contents of command indicated by
Delay execution of the immediately following command.

Compile recursive call to the command being compiled.
Gather the immediately following string.
Convert a number to a double number.
Dividel by n, symmetric division.
defer word that can be used to modify the user interface
prompt.

The following FCodesnames have changed fraimeir pre-Open Firmwargersions for clarityand consistency.
While this canaffectthe tokenizerand/or user interface behavior, the actual behavior of the furassociated
with that FCode number has not changed. Existing (already-tokenized) FCode pribgriares these FCodes will

be unaffected.

Items marked with a * have retained the old name, as a synonym.

Old Name New Name
u#

#> u#>

#s u#s

<< Ishift ~ *
>> rshift *
attribute property

/c* chars *
cal+ char+ *
decode-2int parse-2int
delete-attribute delete-property
eval evaluate *
flip whbflip

get-inherited-attribute
get-my-attribute
get-package-attribute
is

Iflips

map-sbus

nal+

/n*

not

u*x

version

wflips

250

get-inherited-property
get-my-property
get-package-property
to
Iwflips
map-low
cell+ *
cells *
invert *
um*
fcode-revision
whbflips

IEEE

CORE REQUIREMENTS AND PRACTICES Std 1275-1994
X+ d+

X- d-

xdr+ encode+
xdrbytes encode-bytes
xdrint encode-int
xdrphys encode-phys
xdrstring encode-string
xdrtoint decode-int
xdrtostring decode-string
xu/mod um/mod

H.8 User interface name changes

The following user interface commanadames have changed frotheir pre-Open Firmwareersions, with no
change in behavior.

Old name New name
.attributes .properties

cd dev

reset reset-all
select-dev open-dev
unselect-dev device-end

H.9 Other variances from the Open Firmware standard

The following items describe additional areas where existing pre-Open Firmware implementationscomply
with provisions of this specification. This list is not exhaustive.

H.9.1 dl command

In someexisting pre-Open Firmware implementations, thecommand receives text from a specsrial line
device regardless of the device that is the current input source.

H.9.2 Client interface

Most pre-Open Firmware implementations have a diffeckant interface

H.9.3 byte-load command
In someexisting pre-Open Firmware implementatiobgte-load doesnot saveandrestore thaablesthat map
program-defined-Code functiongo their assigneBCode numbersOn such implementations, &Code program
thatexecutedyte-load cannot depend on being ableitterpret any of its program-defindeCode functions
after byte-load returns.However, itcan can continue texecute codehat was previously compiledhto a
definition that calledbyte-load , and it can interpret system-defined FCode functions.
byte-load is not an FCode on many systems. Use:

" byte-load" $find drop execute

to achieve the equivalent effect.

Previous usage of byte-load daosst support theexecution token semantics tife “xt” parameter. Instead, the
value of that parameter must always be 1.

251

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

H.9.4 fcode-revision command

This FCodereturns the revisiottevel of the FCodedevice interfacdi.e., whichFCodesare supported)Systems
which support Open Firmware witeturn avalue of (hex) 0003.0000 (i.e., 3.0), or possibly greatemag be
required by future editions of this specification.

OpenBoot versiorR.x systemsreturn a similar encoding, i.e., (hex) 0002.00@penBoot versiorl.x systems
return a value of (hex) 0000.xxxx.

H.9.5 *“hierarchical " devices

Someexisting pre-Open Firmware implementationsS&us [B2] declare adevice_type " property value of
“hierarchical " instead of the requiredsbus ".

Someexisting pre-Open Firmware implementations of S@&8lices declare adévice_type " property value of
“hierarchical " instead of the suggestedcsi .

H.9.6 within command
The definition ofwithin hasbeen changed slightly to conform with AN®rth. The changaffects only the

behavior forarguments spanning the barrlsrtween positivand negative numbers, i.e., 0x8000.0000. Ordinary
usage is not affected.

H.9.7 " hex strings
Some pre-Opefrirmware user interfacesnd tokenizes do not supporembeddechex valueswithin a" string.

However, arFCode progranthatused a newer tokenizer to create sudrimg will operateproperty, even in an
older system that does not recognize such a construct from the user interface.

H.9.8 noshowstack command
noshowstack is not supported in most pre-Open Firmware systelowever,thestatus command, while not

documented, may still be used on these systems to vary the behavioolaiptioenpt. Alternatively, gower-cycle
may be used to turn offshowstack . Or, on some systemshhowstack has a toggled behavior.

H.9.9 Path resolution

The pathresolution algorithmhasbeen refined to allow embeddatias names and toorrect other problems.
Typical usage should be unaffected.

H.9.10 “name’ property

The "name” property now recommends &-digit Organizationally Unique Identifier (OUI), as well & stock
symbol identifier.

H.9.11 New standard system nodes

The/chosen standard system node is new.

252

IEEE
CORE REQUIREMENTS AND PRACTICES Std 1275-1994

H.9.12 Version 1.x
The first OpenBoot systemshipped were numbered as versfarx”. While similar in manyrespects to Open

Firmware, a number of featuregere not supported, in addition to the othdifferences previously listed. For
detailed information on FCode version 1.x, congdiiting FCode Program§B7].

253

CORE REQUIREMENTS AND PRACTICES

Annex |

Index of Open Firmware glossary terms

(informative)

--bp

-1

-bp

-rot
-trailing

map

“#address-cells”
“#address-cells”
“#size-cells”
“#size-cells”

e

“laliases”
“/chosen”
“lopenprom”
“loptions”
“address-bits”
“address”
“address-bits”
“available”

“block”
“bootargs”
“bootpath”
“oyte”
“character-set
“compatible”
“deblocker”
“decodeunit”
“device_type”

“disk-label”
“display”

“draw-logo
“existing”
“fbl"

u.I:b8n

“font”

49, 73, 103
94, 119
52, 106
94, 119
49, 72,178
77,189

158
50, 58, 75, 101, 240

77,102, 111

23, 108, 175, 247

175

159, 173, 175

23, 159, 175, 184
103

109

125

169

169

107

20, 55, 107, 145

27
24,27, 110, 125, 140, 159,
176

25, 26, 27, 117, 132

85, 118

84, 119

25, 26,121, 132

124

20, 127, 247

24,25, 26, 28, 117,121, 129
108, 182

6,20, 24, 25, 56, 117, 121
132, 134, 159, 163, 182, 187,
200, 208
25,27,117, 133, 170
25,29, 56, 112, 132, 134,
136

136

24,110, 140

31, 48, 125, 126, 134, 145,
151, 155, 180, 183, 193, 243
25, 29, 31, 32, 58, 125, 126,
134, 142, 145, 151, 155, 180,
183, 193
25

“hierarchical”

“interrupts”

“intr”

“load”
“local-mac-address”
“mac-address”
“max-frame-size”

“max-frame-size”
“memory”

“mmu”
“model”
“name”

“network”

“obp-tftp”
Uopenn
“packages”
“params”
“ranges”

“regH

“relative-addressing”
“restore”
“ringell”
“screen”
“scsi-2”
“selftest”
“serial”
“status”
“stdin”
“stdout”

#

#>
#address-cells

#columns

#line
#lines

#out
#s

$call-method

IEEE
Std 1275-1994

249

20, 150, 180, 202, 229
150, 151, 180, 245

26, 163
27, 156, 157, 163, 236
27,156, 158, 163

159

27
27,159, 182, 189

23
20, 56, 160

7, 15, 20, 41, 42, 44, 56
127,132, 136, 160, 162, 171,
187, 229, 245, 247, 250

25, 26, 28, 132, 156, 158,
159, 163, 174, 236
26, 28, 163, 167, 233, 236
126

144,170

245

23,173, 200

20, 24, 27, 40, 41, 56, 110,
140, 159, 161, 175, 184, 187,
200, 202, 229, 232

176

177
116

89

208
59

25,127,132, 182

20, 186

87, 186
87, 186

50, 78, 102, 190, 240, 248
50, 78, 102, 240, 248

130, 138, 158, 161
29, 32, 56, 126, 142, 195,
241, 243, 244
52,77, 141, 155, 240

29, 32, 56, 142, 155, 241,

243, 244

52,77, 169, 240
50, 78, 179, 240, 248

52, 55, 64, 123, 141, 155,
163, 164

255

IEEE
Std 1275-1994

$call-parent
$call-method
$call-parent
$callback
$create

$find

$number
$nvalias
$nvunalias
$open-package
$open-package
$setenv

$sift

(

()

(cr

(debug
(is-user-word)
(is-user-word)
(patch)

(see)

(u)

*/
*/mod

+!
+bp
+dis
+loop

.adr
.attributes
.bp
.breakpoint
.calls

d
freqgisters
.h

256

55, 123

241

241

67, 89, 123
81, 128, 247

52, 144, 240, 249

52,77, 165, 240
89, 165

89, 166

27,54, 169
241

20, 86, 164, 166, 167, 183

91, 184
82,102, 109, 111

76, 102

78, 103, 104, 190
52, 128, 240

92, 130

53, 152

241

91, 170, 248

91, 181

78, 104, 190

49, 73, 103, 239
73, 103
73, 160

49, 73, 103, 239
50, 75, 103, 240
94, 119
93, 133
54, 80, 117, 157

51, 81, 103, 126, 128, 154,

240

239
240
240

50, 78, 103, 240
76, 103, 111
76, 99, 103, 111
94, 108, 192
249

94, 119

94, 119

91, 123

78, 129

92, 145

78, 147

.instruction

.properties

.1
.registers
.S

.step

/
/aliases
lc

/c*
/chosen

/L
/l
[I*
/mod
/n

/n*
/openprom
/options
/packages
Iw
w*

<#
<<

<>

<w@

>
>=
>>
>>a
>body
>font
>in
>number
>physical
>r

?

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

94, 119, 150, 186
90, 171, 249
50, 78, 172, 240

92, 175

50, 78, 179, 184, 240
94, 186

20, 49, 73, 103, 239
20
50, 51, 74, 122, 124, 125,
240
74,122, 248
21, 23, 61, 84, 85, 87, 182
189, 250
240
51, 74, 153, 154, 157
51, 74, 153, 240
49, 73, 160, 239
50, 51, 74, 124, 161, 162,
240
74,162, 248
20,176
20, 86
9,17, 21, 22, 27, 44
51, 74,192, 193, 240
51, 74, 193, 240

81, 104, 111

81, 104, 108, 111, 139, 156,
157,176, 188, 191

50, 78, 104, 240
50, 78, 104, 240
73, 104, 248
52, 78, 104, 240
50, 78, 104, 240
51, 75, 193, 240

50, 78, 104, 240

50, 78, 104, 240
52, 78, 104, 240
73, 104, 248
52,73, 106, 239
51, 82, 118, 240
31, 57, 145, 183, 241
76, 148
77,165
48, 241, 246
49, 72,99, 172, 239

78, 104

CORE REQUIREMENTS AND PRACTICES

?do

?2dup
?leave

@

[

[

[char]
[compile]

\

]

Jtokenizer

0
o<
O<=
0<>
0=
0>
0>=

1
1-
1+

2

2-

2!

2*

2+

2/
2@
2constant
2drop
2dup
2over
2rot
2swap

3
3drop
3dup

4-byte-id
4-byte-id

abort

abort"

49, 54, 73, 80, 114, 119, 135
154, 156

49, 72, 137, 240

80, 154

50, 58, 75, 104, 240

82, 105

19, 76, 82, 105, 111
76, 110, 124, 247
82, 127

76, 105

82, 105
198

52, 100, 105, 240
50, 78, 105, 239
52, 78, 105, 239
50, 78, 105, 239
50, 78, 105, 239
50, 78, 105, 239
52, 78, 105, 239

52, 100, 105, 240
73, 106
73, 106

52, 100, 106, 240
73, 106

50, 75, 106, 240

49, 73, 106, 240

73, 106

49, 73, 106, 240

50, 75, 106, 240
80, 127

49, 72, 136, 240
49, 72, 137, 240
49, 72, 169, 240

49, 72, 178, 240

49, 72, 187, 240

52, 100, 106, 240
72,137
72,137

48
240

51, 80, 106, 107, 140, 144,
149, 155, 187, 192, 241

80, 107, 109, 110, 115, 134,
135, 158, 164

abs
accept
adr-mask
adr-mask
aerr!
aerr@
again
alarm
alias
align
aligned
alloc-mem

alloc-mem
allot
and

apply
ascii
attribute
awmoot?
aux!
aux@
averr!
averr@

b(*)

b()
b(+loop)
b(:)

b(;)

b(<mark)
b(>resolve)
b(?do)
b(buffer:)

b(case)
b(code)
b(constant)

b(create)
b(defer)

b(do)

b(endcase)

b(endof)
b(field)

b(leave)
b(lit)
b(loop)
b(of)

IEEE
Std 1275-1994

49, 73, 107, 239
76, 107
48
241, 246
204
204
79, 108, 112
59, 109, 192, 241
81, 109
81, 109
50, 74, 109, 240
27,52, 75, 109, 120, 125,
145, 176, 245
240
81, 110, 153, 192
49, 73, 110, 239
95, 110, 140, 247
76, 110
248
35, 83, 84, 85, 110, 118, 239
204
204
204
204

53, 111, 239

53, 60, 111, 143, 239
54, 114, 117, 239
52, 53, 111, 141, 163, 164,
240

53, 111, 112, 113, 117, 119,
240

54,112, 113, 118, 240
54, 112, 113, 119, 240
54, 114, 117, 239
52, 53, 113, 114, 120, 141
163, 164, 240
54, 113, 240
48, 240, 246

52, 53, 114, 141, 163, 164,
240

52, 53, 114, 141, 163, 164,
240
52,53, 113, 114, 120, 141
163, 164, 240
54, 114, 117, 239

54, 115, 116, 240
54, 116, 118, 240
52, 53, 116, 141, 163, 164,
240
54, 116, 239
53, 117, 239
54, 114, 117, 239
54, 118, 239

257

IEEE
Std 1275-1994

b(to)
b(value)

b(variable)

b?branch
banner

base

bbranch
begin

begin-package
behavior

bell

between

b

blank
blink-screen

blink-screen
bljoin
block-size
body>

boot

bootcommand
bootdevice
bootfile
bootargs
bootpath
bounds

bpoff

bs

buffer:

buserrtype
busmaster-regval
bwjoin

byte-load
byte-load

c!
C1

C,

c@

ca+

cal+
cacheoff
cache-on
cacheable

258

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

53, 114, 120, 240
52, 53, 99, 113, 114, 120,
141, 163, 164, 240

52, 53, 113, 114, 120, 141,
163, 164, 240

46, 54, 113, 118, 119, 239
30, 83, 84, 89, 90, 112, 136,
167,171, 187, 239
10, 50, 77, 103, 112, 129,
147, 165, 166, 170, 179, 190,
240

46, 54, 112, 118, 119, 239
79, 108, 115, 118, 176, 191,
193

95, 115, 121, 139

53, 82, 115, 240
52, 76, 115, 240
52,78, 116, 240
50, 76, 116, 240
75, 116

30, 32, 57, 58, 116, 142, 177,
196, 243

241
51, 74, 117, 240
28,117,159, 174,194
52, 82, 118, 240
84, 85, 92, 93, 100, 110, 118,
119, 132, 1383, 156, 181, 239
84, 85, 110, 118
84, 85, 118, 133, 156, 239
84, 85, 118, 133, 156, 239
21

21
49, 73, 119, 240
94, 119
52,76, 119, 240
17, 53, 81, 113, 120, 150,
163
201

201
51,74, 120, 240
59, 121, 171, 182, 249

241

50, 58, 75, 121, 240

51, 81, 121, 126, 128, 154,
240
83, 121, 126, 154

50, 58, 75, 122, 240

51, 74,122

74,122, 248
203

203

204

call-method
call-package
call-package
callback
carret
case

cat
catch

cd
cdata!
cdata@
cell+
cells
char
char-height
chawidth
char+
char-height
char-width
character
charactset
chars
child
claim

clear

clear-cache
clock-frequency
close

close-dev

closepackage
close-package
code
column#

command
comp

compile

compile,

console

constant

context!
context@
control
convert
count
cpeek
cpoke
cr

23
55, 123, 144
241
67, 89, 122
76, 123, 128
54,79, 113, 115, 116, 118,
124, 139, 167
240
19, 40, 51, 64, 66, 80, 124,
188, 241
249
204
204
50, 74, 124, 162, 240, 248
50, 74, 124, 162, 240, 248
76, 110, 124, 247
31, 57, 125, 142, 183, 244
31, 57, 125, 142, 183, 244
50, 74, 122, 124, 240, 248
241
241
195
25
50, 74, 122, 125, 240, 248
54, 125, 241
24,27, 110, 125, 158, 159,
160, 176
72,125
204
201
22,25, 26, 27, 28, 29, 57
117,121, 125, 126, 134, 152,
163, 182, 202, 208
65, 95, 126, 139, 155, 156,
247
27,54, 126
241
83, 121, 126, 139, 154
29, 56, 126, 195, 196, 241
86, 180
51, 75, 126, 240
82, 127
51, 82,127, 240
84
9, 53, 80, 99, 114, 127, 161,
170
204
204
76, 128
48, 240
50, 77, 128, 240
58, 128, 171, 241
58, 128, 241
50, 77, 128, 155, 169, 240

CORE REQUIREMENTS AND PRACTICES

create
created
ctag!
ctag@
ctrace

d-

d#

d+

d-

dcontext@
debug
debugoff
decimal
decode-bytes
decodeint
decode-phys
decode-space
decodestring
decodeunit
decode-2int
decode-int
decode-phys
decode-string
default-font
default-font
defer

delete-characters
delete-lines

delete-property
delete-attribute
delete-characters
delete-lines
delete-property
depth

dev

devalias
deviceend
devicename
device-type
device-end
device-name
device-type
device_type
diag
diag-device
diagfile

53, 81, 114, 128, 136, 247
81

204

204

92, 129

50, 73, 129
77,129
50, 73, 129, 240, 248
240, 248

204
92, 129, 130, 187, 189
92, 129, 130

70, 77,130
95, 130
56, 130
56, 108, 130

202
56, 130
22,40, 108, 130, 202, 208
248

241, 248

241

241, 248

31, 57,130

241

6,17, 19, 29, 30, 32, 53, 57,
67, 81, 82, 92, 114, 115, 116
119, 120, 131, 134, 136, 140,
142, 149, 150, 152, 163, 177,
185, 186, 188, 189, 192, 243,
244,248
30, 32, 57, 58, 131, 142, 151
195, 243
30, 32, 57, 58, 131, 142, 151
195, 196, 243, 244

56, 131

248

241

241

241, 248

49, 72, 131, 240

90, 131, 144, 249

15, 89, 109, 132, 165, 166
90, 132

56, 132, 162
56, 132

249

241

241

112

132
84, 85, 132, 133, 156, 239
84, 85, 132, 133, 156, 239

diag-switch?
diagnose
diagnostic-mode?

diagnostic-mode?
digit
dis
disk
disk0
display
display-status
display-status
dl
dma-alloc

dméree
dma-map-in
drmaap-out
dmaync
dma-alloc
dma-map-in
do

does>
draw-character

draw-logo

draw-character
draw-logo
driver

drop

dump

dup

else
emit
emityte
enable!
enable@
encode-bytes
encodeint

encode-phys
encodestring

encodeunit
encode+
encode-bytes
encode-int
encode-phys
encode-string
endde
end-package

IEEE
Std 1275-1994

85, 88, 133, 239
209
59, 84, 85, 88, 118, 132, 133,
156, 159, 181, 182, 239
241
52,77, 133, 240
93, 133
15,118
85
87
59, 134, 245
241
90, 134, 249
23, 48, 134, 135, 208, 209,
235, 245
23, 134, 208
23, 134, 135, 235
23,135
23, 135, 235
241
235
49, 54, 73, 80, 114, 116, 117,
119, 135, 154, 156, 157
81, 99, 128, 136
25, 30, 32, 57, 58, 136, 142,
151, 243
25, 30, 32, 57, 58, 112, 134,
136, 142, 152, 244
234,241
241
48, 136, 241, 245
49, 72, 136, 240
75, 137
44,49, 72,137, 171, 240

79, 112, 119, 137
50, 76, 137, 150, 240
197, 198

204

204
55, 137, 138, 156, 158, 201
55, 107, 108, 138, 150, 175,
186, 200, 201, 202
55, 108, 130, 138, 173, 175
55, 118, 119, 124, 127, 132,
137, 138, 160, 162, 186
22,138
55, 127, 137, 241, 248
241, 246, 248
110, 140, 184, 241, 246, 248
241, 248

200, 241, 248
83, 126, 139, 154

95, 139

259

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

endO 59, 138, 139, 239 fb8-install 29, 30, 31, 32, 58, 116, 125,
endl 59, 139, 240 126, 131, 136, 140, 142, 145,
endcase 79, 115, 139 149, 152, 155, 177, 180, 189,
endof 54,79, 116, 139, 167 193
environment? 82, 139, 247 fb8-invert-screen 32,58, 142
erase 75, 140 fb8-reset-screen 32,58, 143
erase-screen 30, 32, 57, 58, 140, 142, 151, fb8-toggle-cursor 32, 58, 143
177, 196, 244 fb8-blink-screen 241
erase-screen 241 fb8-delete-characters 241
eval 80, 134, 140, 248 fb8-delete-lines 241
evaluate 51, 80, 118, 140, 240, 248 fb8-draw-character 241
even 73, 140 fb8-draw-logo 241
execute 19, 51, 80, 140, 239 fb8-erase-screen 241
execute-command 209 fb8-insert-characters 241
execute-device-methdB, 39, 40, 95, 110, 140, 181, fb8-insert-lines 241
188 fb8-install 142, 241
exit 51, 80, 140, 239 fb8-invert-screen 241
exit? 77,141, 155 fb8-reset-screen 241
expect 50, 76, 141, 153, 184, 240 fb8-toggle-cursor 241
external 95, 141, 147 fcodedebug? 95, 143, 147, 163, 239
external-token 52,53, 141 fcoderevision 59, 143
external-token 229, 240 fcode-revision 240, 248, 249
fcode-version 241, 245
f 177 ferror 49, 59, 143, 240
false 39, 40, 51, 67, 75, 79, 84, field 53, 81, 116, 143, 187
85, 86, 108, 118, 121, 128, fill 50, 75, 144, 240
133, 137, 140, 141, 143, 144, find 82, 144
146, 151, 156, 157, 159, 165, find-device 39, 40, 64, 90, 144, 149, 169,
167, 168, 170, 185, 187, 188, 183
191, 192, 194, 196, 239 find-method 19, 55, 123, 144
fb1-blink-screen 243 find-package 54, 144, 169
fbl-delete-characters 243 find-method 241
fbl-delete-lines 243, 244 find-package 241
fbl-draw-character 243 finistlevice 59, 121, 139, 145, 171
fbl-draw-logo 244 finish-device 241
fbl-erase-screen 244 firmware-version 245
fbl-insert-characters 244 firmware-version 241
fbl-insert-lines 244 flip 248
fbl-install 125, 126, 145, 180, 193, 243, fload 198
244 fm/mod 73, 145, 247
fbl-invert-screen 244 font 31
fbl-reset-screen 244 fontbytes 31, 57, 145, 183, 241
fbl-slide-up 244 forget 81, 145
fbl-toggle-cursor 244 forth 82, 145
fbl-install 244 framebuffer-adr 30, 31, 57, 145
fb8-blink-screen 32, 58, 142 franteiffer-busy? 48

fb8-delete-characters 32, 58, 142 frame-buffer-adr 241
fb8-delete-lines 32, 58, 142 frame-buffer-busy? 241
fb8-draw-character 32,58, 142 free-mem 27,52, 75, 109, 145, 176
fb8-draw-logo 32,58, 142 freemem, 125
fb8-erase-screen 32,58, 142 free-virtual 55, 145, 158
fb8-insert-characters 32, 58, 142 free-mem 240
fb8-insert-lines 32,58, 142 free-virtual 241
full 86, 180

260

CORE REQUIREMENTS AND PRACTICES

get-inheriteeproperty 56, 146

get-msecs
get-my-property

59, 146
56, 146

get-package-property 56, 146

get-token
get-unum

53, 146
202

get-inherited-attribute 248
get-inherited-property 241, 248

get-msecs
get-my-attribute
get-my-property

241
248
241, 248

get-package-attribute 248
get-package-property 241, 248

get-token
getprop
go

gos
groupcode
group-code

h#
headerless
headers
help

here

hex

hold

hop

hops

[

idprom

idprom@

if
ihandle>phandle
immediate
init-program
input
input-device
insert-characters

insert-lines
insert-characters
insert-lines
install-abort
instalkconsole

instance

interruptenable!
interruptenable@

240

20, 86

92, 93, 94, 118, 146, 155,
181, 185, 186

94, 146
48, 245

241, 245

9, 77,147

95, 141, 147, 164

95, 141, 143, 147, 163, 239
83, 147

51, 81, 147, 240

70,77, 148
50, 78, 148, 190, 240
93, 94, 148

94, 148

50, 80, 148, 239

201

205

79, 94, 113, 137, 148, 188
54, 148, 241

82, 148

93, 148, 155, 185

88, 149, 150, 152

87, 88, 149, 150, 239

30, 32, 57, 58, 142, 149, 151,

195, 244

30, 32, 57, 58, 142, 149, 151,
195, 244

241

241

27,149, 182
83, 84, 87, 88, 89, 149, 150,
169
17,52, 53, 113, 114, 120,
150, 240

205

205

intr
inverse-screen?
inverse-screen?
inverse?
invert
invert-screen

invert-screen
io

is

is-install

is-remove

is-selftest
is-install
is-remove
is-selftest

key
key?
keyboard

Il
l,
@
la+
lal+
label
Ibflip
Ibflips
Ibsplit
Icc
leave
left-parsestring

left-parse-string

Iflips

line#
linefeed

lines/page
literal
load

loop
Ipeek
Ipoke
Is
Ishift
Iwflip
Iwflips
Iwsplit

IEEE
Std 1275-1994

150, 151, 241, 245
29, 56, 151, 196
241
29, 56, 151, 195, 196, 241
50, 73, 151, 165, 239, 248

30, 32, 57, 58, 142, 152, 196,

244
241
88, 152
248
29, 30, 57, 126, 136, 152,
177
29, 57,152
29, 57,152
177, 241
241
241

50, 80, 153, 239

50, 76, 150, 153, 240
50, 76, 153, 240
149

51, 75, 153, 240
51, 81, 126, 153, 154, 240
51, 75, 153, 240
51, 74, 153, 240
51, 74, 153, 240
83, 121, 139, 154
51, 74, 154, 241
51, 75, 154, 241
51, 74, 154, 240
52,77, 154, 240
80, 116, 154
37, 55, 154
241
248
29, 56, 155, 195, 196, 241
76, 155
141
82, 99, 155
25, 26, 28, 36, 92, 93, 117
118, 119, 121, 132, 146, 155,
156, 163, 233, 236
54, 80, 114, 116, 117, 156
58, 157, 241
58, 157, 241
90, 157
49, 73, 104, 157, 239, 248
51, 74,157, 241
51, 75, 157, 241, 248
51, 74, 157, 240

261

IEEE
Std 1275-1994

m*
mac-address
mac-address
map

map-in
map-low
map-out
map-page
map-pages
map-segments
map-low
map-out
map-sbus
map?

mask

max
max-transfer
memmap
memory

memory-test-suite
memory-test-suite

min
mips-off
mips-on
mmu
mmu-nctx
mmu-npmg
mod

model
modify
move

ms
my-address
my-args

my-params
my-parent
my-self
my-space
my-unit
my-address
my-args
my-params
my-parent
my-self
my-space
my-unit

na+

nal+

name
named-token
named-token
negate

262

IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

73, 157
59, 156, 157, 163, 236
241
24, 140, 160
23, 108, 158, 202
55, 108, 158
23, 158, 202
205
205
205
241, 248
145
248
203
59, 158, 159, 241
49, 73, 159, 239
28,117, 159, 208
48, 241, 245
21,61
59, 158, 159, 245
241
49, 73, 159, 239
200
200
21
200
201
49, 73, 160, 239
20, 56, 160, 241
24, 140, 158, 160
50, 75, 160, 240
59, 160, 241
55, 108, 115, 161, 175, 182
40, 55, 115, 121, 156, 161,
171, 182
48
40, 54, 161
54, 115, 123, 124, 161, 188
55, 108, 115, 161, 175, 182
40, 55, 108, 161, 175
232, 241
241
241, 245
241
241
232, 241
232,241

51, 74,162, 240

74, 162, 248

20,21

52, 53, 143, 147, 163
240

49, 73, 163, 239

net
network
new-device

new-name
new-token
new-device
new-token
next-property
next-property
nip

no-data-command

nodefatitites
none
noop
noshowstack
not
nvalias
nvedit
nvquit
nvramrc
nvrecover
nvrun
nvstore
nvunalias

o#
obio
obmem
octal
oem-banner
oem-banner?
-tegyo
oem-logo?
of
off
offset
offsetl6
on
open

opedev

open-package
open-dev
open-package
or
output
outptdevice
over

pack

132
157
59, 115, 121, 145, 163, 171
182
131
52, 53, 147, 164
241
240
54, 164
241
49, 72, 164, 240
209
86, 164
86
52, 82, 164, 185, 240
90, 164, 184, 247, 250
73, 165, 248
15, 89, 165
87, 165, 166
87, 165, 166
87, 166, 239
87, 166
87, 166
87, 165, 166
89, 166

77, 166
203
203
77, 167
89, 112, 167, 239
89, 112, 167, 239
89, 112, 167, 239
89, 112, 167, 239
54,79, 118, 167
51, 75, 167, 240
28, 168
46, 54, 168, 240
51, 75, 168, 240
6,14, 22, 25, 26, 27, 28, 29
37,38, 39, 57, 117, 121, 125
134, 149, 152, 158, 163, 168,
181, 182, 202, 208
22, 38, 39, 44, 65, 95, 115,
149, 155, 156, 168, 169
22,27, 54, 168, 169
249
233, 241
49, 73, 169, 239
88, 150, 152, 169
87, 88, 150, 169, 239
49, 72, 169, 171, 240

52,77, 169, 240

CORE REQUIREMENTS AND PRACTICES

pagesize
parse
parse-2int
parse-word
parse-2int
password
patch

peer
pgmap!
pgmap?
pgmap@
pick
poll-packet
poll-packet
postpone
printenv
probe
probeall
probe-self
probevirtual
probe-virtual
processor-type
processor-type

property
pwd
quit

r>
r@
rb!

rb@
read

readblocks

recurse

recursive

reg
relative-addressing
release

remove-abort
repeat

reset
reset-all
reset-screen

reset-all
reset-screen
restore

resume
retry-command

205

76, 170, 247
55,170
76, 170, 247

241, 248

88, 170, 181

91, 170

54,171, 241

203

203

203
49,72, 171, 240
48

241

82,171, 248

20, 86, 164, 171, 181
48, 241, 246
35, 83, 84, 90, 171
23,171
48

241, 246

48
241, 246

56, 132, 160, 162, 172, 175,
229, 241, 248

90, 172

80, 172

49, 72,172, 239
49, 72,172, 239
58, 121, 173, 179, 241
58, 122, 174, 241
23, 24, 26, 27, 28, 35, 65
117,121, 149, 163, 168, 174,
181, 182, 233
28,174
82, 174, 248
82,174
56, 161, 175, 241
20
24,27, 110, 125, 158, 159,
160, 176, 191
27,149, 176, 182
79, 112, 119, 176, 193
23,176, 249
66, 85, 88, 110, 176, 239
30, 32, 57, 58, 143, 152, 177
196, 244
249
177, 241
25,127,134, 152, 177, 182
91, 92, 177
209

return
returnbuffer
return-buffer
ring-bell
ring-bell
rl!
r@
roll
rot
rshif
rshift
rw!

nw@

s>d
sbus
sbusintr>cpu
sbus-intr>cpu
screen
screen-#columns
screen-#rows
screen-height

screen-width

screen-height
screen-width

security-#badlogins

security-mode

security-password

see

seek

segmentsize
select-dev
selftest

selftest-#megs
serr!
serr@
set-address
set-args
set-default

set-defaults
set-font

set-table
set-timeout

IEEE
Std 1275-1994

94, 177
48
241
27,177, 196
182
58, 101, 153, 177, 241
58, 104, 153, 178, 241
49, 72, 178, 240
49, 72, 178, 240
239
49, 73, 104, 178, 248
58, 178, 179, 192, 241
58, 179, 192, 241

102, 179
77,179, 248
78, 179
73, 180, 248
203
55, 150, 151, 180
241
87, 150, 169
88, 142, 180, 239, 244
88, 142, 155, 180, 239, 244
31, 32, 57, 142, 180, 243,
244
31, 32, 57, 142, 180, 243,
244
241
241
180, 239
88, 170, 180, 181, 239
170, 181, 239
91, 181
26, 28, 65, 117, 121, 174,
181, 194
205
249
22,29, 57, 88, 152, 181, 182
188
88, 182, 239
205
205
208, 209
59, 115, 121, 161, 171, 182
86, 164, 166, 167, 180, 181,
182
86, 164, 166, 167, 180, 181,
182
30, 31, 57, 125, 130, 142
145, 183, 244
48
208

263

IEEE

Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

set-token 48, 53, 173, 174, 177, 178, 140, 158, 160, 164, 188, 191,

179, 183 241
set-args 232,241 till 94, 188
set-callback 122 to 9,81, 82,92, 116, 119, 120,
set-font 241 126, 131, 136, 140, 145, 149,
set-table 240 152, 155, 177, 186, 188, 189,
set-token 240 192, 248
set-token-table 240 toggle-cursor 30, 32, 57, 58, 143, 189, 244
setenv 20, 86, 99, 164, 166, 167, toggle-cursor 241

181, 183 tokenizer| 198
setprop 20, 86 tracing 92,129, 189
short-data-command 209 translate 24, 140, 158, 160, 189
show-children 208 true 22,40, 50, 51, 52, 59, 75,
show-devs 89, 183 76, 77,78, 79, 80, 82, 84,
showstack 90, 164, 184, 247, 250 85, 86, 87, 88, 89, 93, 95,
sifting 91, 184 98, 104, 105, 109, 110, 112,
sign 50, 78, 184, 240 116, 118, 121, 128, 132, 133,
sm/rem 73, 184, 248 140, 141, 143, 144, 146, 151,
smap! 203, 205 153, 157, 159, 165, 166, 167,
smap? 203 168, 170, 181, 185, 188, 189,
smap@ 203 190, 191, 192, 193, 194, 196,
source 76, 184 239
space 77,184 tuck 49,72, 189, 240
spaces 77,184 type 50, 76, 189, 190, 240
span 50, 76, 184, 240
startO 46, 47, 59, 168, 185, 240 u# 51, 78, 190, 240, 248
startl 46, 47,59, 168, 185, 240 u#> 51, 78, 190, 240, 248
start2 46, 47, 59, 168, 185, 240 u#s 51, 78, 190, 240, 248
start4 46, 47, 59, 168, 185, 240 u* 73, 190
state 51, 82, 185, 240 u*x 248
state-valid 93, 146, 185 u. 50, 78, 190, 240
status 185, 248, 250 u.r 50, 78, 191, 240
stdin 21, 88, 149, 186 u/mod 49, 73, 191, 239
stdout 21, 88, 169, 186 u< 50, 78, 190, 240
step 93, 94, 148, 186, 187 u<= 52, 78, 190, 240
stepping 92,129, 187, 189 u> 50, 78, 190, 240
steps 94, 187 u>= 52,78, 190, 240
struct 81, 187 u2/ 51, 73, 190, 240
suppress-banner 84, 89, 90, 112, 171, 187 um* 50, 73, 190, 240, 248
suspenefcode 59, 187 um/mod 50, 73, 190, 240, 248
suspend-fcode 241 unaligned-I! 75, 191
sverr! 205 unaligned-1@ 75, 191
sverr@ 205 unaligned-w! 75,191
swap 49, 72, 187, 240 unaligned-w@ 75, 191
sym 94, 187, 188 unloop 50, 80, 191, 240
sym>value 67, 94, 187, 188 unmap 24, 140, 160, 191
sync 67, 89, 188 unselect-dev 249

until 79, 113,191

test 22,88, 181, 188 upc 52, 77,191, 240
testall 88,181, 188 use-nvramrc? 35, 83, 87, 165, 166, 191,
then 79,119, 188 239
throw 39, 40, 51, 80, 109, 110, 121, user-abort 59, 192

122,123, 124, 125, 134, 135, user-abort 241

264

CORE REQUIREMENTS AND PRACTICES

vac-hwflush
vac-linesize
value

value>sym
variable

version
versionl

w!
W!

w@

wat

wal+
whflip
whbflips
whbsplit
wilips
while
window-left

window-top

window-left
window-top
within
wljoin

word
words
wpeek
wpoke
write

write-blocks

X+
X-

xdr+
xdrbytes
xdrint
xdrphys
xdrstring
xdrtoint
xdrtostring
xmit-packet
xmit-packet
Xor

201 xu/mod
201

9,17, 29, 31, 53, 56, 57, 81,
82,92, 120, 125, 126, 145,
150, 151, 155, 163, 180, 189,
192, 193

67, 94, 108, 192

17, 50, 51, 52, 53, 59, 76,
77,81, 82, 88, 93, 112, 120,
148, 150, 155, 158, 163, 169,
184, 185, 186, 192, 245

248

46, 47, 59, 168, 192, 240

51, 75, 192, 240

51, 81, 126, 128, 154, 192,
240

51, 75,192, 240

51, 74, 193, 240

51, 74, 193, 240

51, 74, 193, 240, 248

51, 75, 193, 241, 248

51, 74,193, 240

248

79, 113, 176, 193

30, 31, 32, 57, 126, 142, 193,
243, 244

30, 31, 32, 57, 142, 155, 193,
243, 244

241

241

50, 78, 193, 240, 249

51, 74,194, 240

76, 194

91, 194

58, 194, 241

58, 194, 241

23, 25, 26, 27, 28, 35, 65,
117,121, 134, 152, 163, 168,
169, 181, 182, 194, 233, 234
28, 194

248
248
248
248
248
248
248
248
248
48
241
49, 73, 194, 239

248

IEEE
Std 1275-1994

265

IEEE
Std 1275-1994 IEEE STANDARD FOR BOOT (INITIALIZATION CONFIGURATION) FIRMWARE:

Annex J
Bibliography

(informative)

[B1] IEEE Std 1014-1987, IEEE Standard for a Versatile Backplane Bus: VMEDbus.

[B2] IEEE Std 1496-1993, IEEE Standard for a Chip and Module Interconnect Bus: SBus.

[B3] ISO/IEC 8802-3 : 1993 [ANSVIEEE Std 802.3, 1993 Edition], Informatiechnology—Local and
metropoltan areanetworks—Part 3: Carriesense multipleaccesswith collision detection (CSMA/CDaccess

method and physical layer specifications.

[B4] ISO/IEC 10288 : . . . , Information processing systems—Enhanced Small Congystem Interface
(SCsl-2)1

[B5] OpenBoot Command ReferenBevision 2x, Sun Microsystems, Inc., 1994.
[B6] OpenBoot PROM Architecture Specificatidtevision 2.0, Sun Microsystems, Inc., March 1991.

[B7] Writing FCode ProgramsRevision 2x, Sun Microsystems, Inc., 1994.

10 |EEE Std1014-1987has been withdrawn anddsit of print; however, copies can be obtained from tBEE Standards Department, IEEE, Inc.,
445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.

1 This document is in progress. When it is approved and published, it will supersede the current $8@HE@,9316 : 1989,Information
processing systems—Small Computer System Interface (SCSI).

266

