

Open Firmware

Recommended Practice

:

8-bit Graphics Extension

Version 1.2 (draft)

October 26, 1995 1:59 pm

Published by the Open Firmware Working Group

This document is a voluntary-use recommended practice of the Open Firmware Working Group. The Open Firmware
Working Group is an ad hoc committee composed of individuals interested in Open Firmware as defined by IEEE
1275-1994, related standards, and their application to various computer systems.

The Open Firmware Working Group is involved both in IEEE sanctioned standards activities, whose final results are
published by IEEE, and in informal recommendations such as this, which are published on the Internet at:

http://playground.sun.com/pub/1275

Membership in the Open Firmware Working Group is open to all interested parties. The working group meets at reg-
ular intervals at various locations. For more information send email to:

p1275-wg@risc.sps.mot.com

Revision History

Version 1.0 Original

Version 1.1 used template. minor clean-up. Added 16-color Text Extension defaults.

Version 1.2 fixed spelling of

color!

,

color@

, added

dimensions

, as per 7/18/95 meeting
minor fixes.

Open Firmware Recommended Practice 8-bit Graphics Extension 1.2 (draft)

10/26/95 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1. Introduction

1.1. Purpose

A set of "bit-mapped" graphics methods (to be implementated by display device packages) is de-
fined by this extension (

draw-rectangle

,

fill-rectangle

,

read-rectangle

) that are
available to Client Programs (via the

call-method

 client callback) to display and read rectan-
gular areas of the display buffer. Also defined by this extension are display device package meth-
ods (

color!

,

color@

,

set-colors

,

get-colors

) that control the mapping of pixel values
to display colors. A query method (

dimensions

) is defined that returns the current viewable size
of the display.

Note: a Client Program can detect whether the display package implements this exten-
sion by doing a

catch

 of a

call-method

 of

0 color@

. If the package does not
implement this extension, an error will be indicated by a non-zero

throw

value.

1.2. Scope

This extension applies to Open Firmware display device packages and to Client programs that re-
quire access to these extensions.

2. References and Definitions

2.1. References

[1]

IEEE Std 1275-1994,

IEEE Standard for Boot (Initialization Configuration) Firmware: Core
Requirements and Practices

, published by IEEE.

[2]

Open Firmware Recommended Practice: 16-color Text Extension

, published by Open Firm-
ware Working Group.

2.2. Definitions

color-number

: a value that represents a color.

display device package

: An Open Firmware package whose

"device_type"

 value is

"display"

and that implements the methods and properties defined in section 3.7.1 of [1].

pixel-map

: a set of contiguous bytes in memory that represents a rectangular region of pixels that
can be drawn to (or, read from) the display buffer.

3. Graphics model

The model used by this extension is that pixels are represented by 8-bit values (color-numbers) that
specify one of 256 colors. The mapping of a color-number to a particular display color is specified
by means of 8-bit R-G-B components. The

color!

 and

color@

 methods pass the R-G-B com-
ponents via the stack. The

set-colors

 and

get-colors

 methods reference a range of color
values by means of a memory area where each color value consists of contiguous bytes where the
first byte is the Red component, the second byte is the Green component and the third byte is the
Blue component. A component value of 0 represents absence of that color, while a value of 255
represents full saturation of the component; i.e., 0,0,0 is black and 255,255,255 is white. When
multiple color values are present, the Red component of the second color value immediately fol-
lows the Blue component of the first color value, and so on.

8-bit Graphics Extension 1.2 (draft) Open Firmware Recommended Practice

4 10/26/95

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Rectangular regions of this display buffer are represented by a set of coordinates that specify the
position of the top-left pixel (

x,y

) and its width and height (

w,h)

. The top-left pixel of the display
has the coordinate

0,0

. Data in memory that represent pixel-maps consist of

w*h

 contiguous
bytes, where the first

w

 bytes represent the pixels of the first row of the rectangle (with the first byte
representing the left-most pixel), the next

w

 bytes represent the next row, etc. Each such byte con-
tains the color-number of the corresponding display buffer pixel.

4. Requirements

A display device package that implements this extension

shall

 provide all of the following meth-
ods:

4.1. Pixel-mapped graphics methods

draw-rectangle

(adr x y w h --) M

Draw a rectangle in the display buffer from a pixel-map.

Displays a rectangular image at pixel location

x

,

y

 of size

w

,

h

 from the pixel-map defined
by

adr

.

x

,

y

 are display coordinates (where

0,0

 corresponds to the

top,left

 displayed
pixel);

w

,

h

 are the width and height of the image.

fill-rectangle

 (number x y w h --) M

Fill a rectangle in the display buffer with a constant color.

Fills a rectangular display area, defined by

x,y,w,h with the color corresponding to
number.

read-rectangle (adr x y w h --) M

Read a pixel-map from a rectangle in the display buffer.

This method copies the 8-bit number values corresponding to the display pixels , defined
by x,y,w,h into the buffer specified by adr.

Note: for displays that are not in 8-bit per pixel mode, the read-rectangle method is un-
defined. For this reason, it is recommended that displays provide an 8-bit mode and
that this mode is used during Open Firmware execution.

4.2. Color-value specification methods

The following methods allow a Client program to control the color mapping:

color! (r g b number --) M

Set the color corresponding to number to the value specified by r, g, b.

color@ (number -- r g b) M

Read the color value correspoding to number, returning its r,g,b components.

Open Firmware Recommended Practice 8-bit Graphics Extension 1.2 (draft)

10/26/95 5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

set-colors (adr number #numbers --) M

Set a range of #numbers consecutive colors, starting with number. adr is the address
of the memory area from which the color components are specified.

get-colors (adr number #numbers --) M

Read the color values of #numbers consecutive color values, starting with number. adr
is the address of a memory area into which the R-G-B components will be copied.

4.3. Geometry query method

dimensions (-- width height) M

Returns visible width and height in pixels.

The returned values are the visible dimensions of the screen in the current mode.

Note: Client programs may test for the existence of this method, and if it does not exist, use the
"width" and "height" properties. If the method does exist, its return values may differ from
the static property values.

4.4. 16-Color Text Extension defaults

If a display device driver implements both the 8-bit Graphics Extension and the 16-color Text Ex-
tension, it shall initialize the first 16 color numbers to correspond to the colors indicated in Table
1 in the 16-color Text Extension. A client program can use those colors without explicitly initial-
izing them. If a client program changes the color assignment for color numbers 0-15, the behavior
of the 16-color Text Extension might be affected.

