
Open Firmware
Recommended Practice:

Interposition
Version 0.2 (draft)

July 31, 1995 10:57 pm

Published by the Open Firmware Working Group

This document is a voluntary-use recommended practice of the Open Firmware Working Group. The Open Firmware
Working Group is an ad hoc committee composed of individuals interested in Open Firmware as defined by IEEE
1275-1994, related standards, and their application to various computer systems.

The Open Firmware Working Group is involved both in IEEE sanctioned standards activities, whose final results are
published by IEEE, and in informal recommendations such as this, which are published on the Internet at:

http://playground.sun.com/pub/1275.

Membership in the Open Firmware Working Group is open to all interested parties. The working group meets at reg-
ular intervals at various locations. For more information send email to:

p1275-wg@prombo.eng.sun.com.

Revision History

0.1 - Created from proposal 272.

0.2 - Corrected the "http:" address above.
 Fixed typos in sections 4.1 ("a5" should be "b5") and 5.2 (misspelled word).

Open Firmware Recommended Practice Interposition 0.2 (draft)

7/31/95 3

1. Introduction

Interposition is a system ROM implementation technique that provides a modular way to layer file
access capabilities on top of unmodified Open Firmware device drivers.

1.1. Purpose

Historically, Open Firmware implementations have provided "raw" access to partitioned disk de-
vices. Recently, however, it has become desireable to extend the semantics of disk devices to in-
clude access to named files. The interposition technique is a way of adding file access capabilities,
supporting many different file system structures, to an Open Firmware system, without changing
existing Open Firmware disk device drivers.

1.2. Scope

Interposition is intended as an internal implementation technique for Open Firmware system
ROMs. Its effects are intended to be invisible to the external interfaces defined by IEEE Std 1275-
1994, except for the addition of a new client interface service to allows client programs that are
cognizant of interposition to inquire about the presence of interposition in particular instance
chains. Existing client programs are expected to be unaffected.

2. References and Definitions

2.1. References

[1] IEEE Std 1275-1994, IEEE Standard for Boot (Initialization Configuration) Firmware: Core
Requirements and Practices, published by IEEE.

2.2. Definitions

core document: The standard cited in reference [1].

3. FCode Functions and User Interface Commands

A system that implements interposition and the Open Firmware Device Interface shall implement
the following FCode function.

A system that implements interposition and the FCode Debugging Command Group of the Open
Firmware User Interface shall implement the following function as a User Interface command.

interpose (adr len phandle --) F 0x12b

Schedule a package for interposition

Schedule the package identified by 'phandle' for interposition, with the string 'adr len' as its
arguments.

 If a package is currently scheduled for interposition when "interpose" is executed, the re-
sult is undefined (in other words, a system implementation need not support multiple simul-
taneous interposition attempts).

 Usage Restriction: This function must be executed only during the creation of an instance
chain, i.e. during the execution of a package's "open" method during pathname resolution
in "open-dev" context, as in clauses (f2), (k1iii) and (m2) of section 4.3.1 of the core doc-
ument.

Interposition 0.2 (draft) Open Firmware Recommended Practice

4 7/31/95

4. Modification to the Pathname Resolution Algorithm

A system that implements interposition shall implement the following modifications to the core
document’s pathname resolution algorithm (clause 4.3.1 of the core document).

4.1. Interposition Mechanism

This modification creates the mechanism by which interposition occurs as a result of the execution
of interpose.

Create the following additional procedure for the pathname resolution process:

4.3.7 Handle interposers procedure

a) If no package is currently scheduled for interposition

 1) Exit this procedure

b) Otherwise (i.e. a package is currently scheduled for interposition)

 1) Unschedule that package, so that it is no longer scheduled for interposition

 2) Save the specification of the active package for later restoration

 3) Set the active package to the package that was scheduled for interposition.

 4) Set ARGUMENTS to the string that was scheduled for that interposition.

 5) Create a new linked instance using the4.3.2 Create new linked instance
 procedure2.

 6) Execute the node's open method

 7) Restore the active package to the value saved in step 2)

 8) Go back to step a)

After 4.3.1 f2), add:

3) Handle possible interpositions using the4.3.7 Handle interposers procedure.

 After 4.3.1 k1iii), add:

iv) Handle possible interpositions using the4.3.7 Handle interposers procedure.

 After 4.3.1 m2), add:

2') Handle possible interpositions using the4.3.7 Handle interposers procedure.

 Modify 4.3.1 m5) to read:

5) Exit from this procedure, returning either the 'ihandle' of the instance created in step m1)
 or, if any interpositions were handled in step 2'), the 'ihandle' of the instance created in
 the last execution of step b5) of the4.3.7 Handle interposers procedure.

4.2. User-specified Interposition

This modification creates an additional way of causing "manual" interposition by including a
"%<package_name" component in a path name.

Open Firmware Recommended Practice Interposition 0.2 (draft)

7/31/95 5

After 4.3.1 i), add:

i') If NODE_NAME begins with the character '%'

 1) Remove the leading '%' from NODE_NAME

 2) Search for a matching package among the direct children of the "/packages" node,
 using the4.3.6 Node Name Match criteria. If a match is found:

i) Save the specification of the active package for later restoration

ii) Set the active package to the package that was scheduled for interposition.

iii) Create a new linked instance using the4.3.2 Create new linked instance
 procedure.

iv) Execute the node's open method

v) Restore the active package to the value saved in step a)

vi) Go back to step g)

 3) Otherwise (i.e. if no match is found), go to step l)

5. Client Services

5.1. Existing client services

A system that implements interposition and the Open Firmware Client Interface shall conform to
the following requirement:

The names of packages interposed either via the use ofinterpose or via the "%" pathname syntax
shall not appear in the pathname returned by theinstance-to-path client service.

5.2. New client services

A system that implements interposition and the Open Firmware Client Interface shall implement
the following additional client service:

instance-to-interposed-path

IN: ihandle, [address] buf, buflen

OUT: length

This service returns the fully-qualified pathname, including the names and arguments of in-
terposed packages, corresponding to the identifierihandle, storing at mostbuflen bytes as
a null-terminated string in the memory buffer starting at the address buf. The names of
interposed packages shall begin with the character '%'. If the length of the null-terminated
pathname is greater thanbuflen, the trailing characters and the null termiator are not stored.
Length is the length of the fully-qualified pathname excluding any null terminator, or -1 if
ihandle is invalid.

