
Open Firmware
Recommended Practice:

Generic Names

Version 1.4

December 30, 1996 1:04 pm

Approved Version

Published by the Open Firmware Working Group

This document is a voluntary-use recommended practice of the Open Firmware Working Group.
The Open Firmware Working Group is an ad hoc committee composed of individuals interested in
Open Firmware as defined by IEEE 1275-1994, related standards, and their application to various
computer systems.

The Open Firmware Working Group is involved both in IEEE sanctioned standards activities,
whose final results are published by IEEE, and in informal recommendations such as this, which
are published on the Internet at:

http://playground.sun.com/1275

Membership in the Open Firmware Working Group is open to all interested parties. The working
group meets at regular intervals at various locations. For more information send email to:

p1275-wg@risc.sps.mot.com

Table 1. Revision History

Version Date History

Version 1.0 03/01/96 First version of document.

Version 1.1 04/11/96 Added an authorized-by section to 1.0, extended scope to add who the
recommended practice applies to, modified Generic Names List (Guideline
1), and added Generic Names to table 1. Editorial changes were also made.

Version 1.2 08/07/96 Added definitions (Section 2.2). Edited Guildeline 1 name list (removed ’oth-
er’, added ’interrupt-controller’, ’fddi’, ’fcc’ & ’atm’). Removed material in
Section 3.0., Generic Names per proposal #358. Made Section 6.0 an In-
formation Section and removed PCI Class Codes Table 1 (Referenced the
PCI binding). Added new Section 7.0, ’Compatibility Information’.

Version 1.3 09/23/96 Added new or changed generic names to Guideline 1 list (’fdc’, ’fiber-chan-
nel’, ’ssa’, ’pc-card’, interrupt-controller & ’dma-controller’). Removed ’old’
Section 6.0 (Contents moved to PCI binding). Removed references to PCI
Bus. Made editorial changes to ’new’ Section 6.0, compatibility.

Version 1.4 10/21/96 Made Version 1.4 an Approved Version. Made numerous editorial
changes; changed all property quotation marks to computer format ones,
corrected spacing and corrected spelling of ’fibre-channel’.

Open Firmware Recommended Practice Generic Names 1.4

12/30/96 Approved Version 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1. Introduction
This Generic Names Recommended Practice was authorized by the Open Firmware Working
Group accepting Proposal Number 251.

1.1. Purpose
The rules for device naming described in Reference [1] attempt to simultaneously accomplish two
objectives:

• To provide a human-readable identifier for use in device paths.
• To provide a unique identification of the device's detailed programming model to allow oper-

ating systems to determine which driver to use.

These objectives conflict with one another. For human use within a device path, a brief name that
suggests the device's function is preferable. For use in determining an appropriate operating sys-
tem device driver, an explicit, unique name that includes the manufacturer name and the detailed
programming model information is preferable. Attempting to accomplish both objectives with a
single name often results in a name that is unsatisfactory for either purpose.

Historically, implementations have often adopted a mixed approach, using brief names for built-in
devices and verbose names for plug-in devices. This approach has the problem that the name of a
particular device may be different depending on whether the device is built-in or plug-in. Also,
because of the tension between the conflicting objectives, different manufacturers chose different
trade-offs, some sacrificing uniqueness in favor of human readability and others making the oppo-
site choice.

There is no inherent reason why a single property ("name") must be used for both purposes. The
"compatible" property already participates in the OS driver selection process, and if the first
component of that property's value is an explicit, unique name, precise driver matching will result,
even if the"name" property's value is a briefgeneric name (e.g. "disk").

Furthermore, the use ofgeneric names does not defeat the purpose of unambiguously choosing a
a particular device within the device tree through the use of a device path. The fundamental means
for ensuring unambiguous node names is theunit address component (the portion after the "@"
character, which matches the first entry of the"reg" property’s value). The driver-name compo-
nent (which matches the"name" property's value) is inherently unreliable for the purpose of pre-
cisely choosing a particular device, due to the possibility of multiple identical devices at a given
level of the device tree. Since, in the most general case, theunit address component must be used
to distinguish two devices of the same type, the increased probability ofname space collisions that
would result from the use ofgeneric names does not cause loss of functionality. Indeed, it is not
unreasonable to think that some users might prefer to distinguish two display devices by the device
paths:

/pci/display@2 and/pci/display@4
as compared to:

/pci/IBM,v915 and/pci/number9-723

As already noted, OS driver selection software almost certainly prefers to have the explicit infor-
mation contained in, for example,IBM,v915, but the software can get that information from the
"compatible" property as easily as from the"name" property.

Generic Names 1.4 Open Firmware Recommended Practice

4 Approved Version 12/30/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1.2. Scope
This recommended practice changes the naming conventions for device nodes, affecting plug-in
cards, Open Firmware system implementations, and client programs.

Applies to all new recommended practices and system, bus and device bindings. Existing bindings
may choose to accept this recommended practice for future revisions as appropriate.

2. References and Definitions

2.1. References
[1] IEEE Std. 1275-1994, IEEE Standard for Boot(Initialization
Configuration)Firmware:Core Requirements and Practices, published by IEEE.

2.2. Definitions
device: Normally, a particular hardware implementation of a function.Sometimes, a particular
definition of an abstract implementation.

emulated device:A device, usually an older device, with which the device claims compatibility.
The newer device claims to emulatethe older.

emulating device: A device, usually a newer device, that claims compatibility withanother,
usually older, device.

3. Generic Names
Because of the difficulties that result from usingname for two conflicting purposes, and since that
dual use is unnecessary, the working group recommends the following guidelines for future de-
vices:

Guideline 1: "name" property values must begeneric, reflecting the device's function, but not
necessarily its precise programming model. If appropriate, the value should be one of the follow-
ing listed below:

• disk
• fdc
• tape
• pci
• pc-card
• vme
• sbus
• scsi
• ide
• isa
• keyboard
• display
• mouse
• sound
• ethernet

Open Firmware Recommended Practice Generic Names 1.4

12/30/96 Approved Version 5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

• token-ring
• fddi
• fcs
• fibre-channel
• atm
• timer
• memory
• printer
• serial
• ssa
• rtc
• nvram
• scanner
• interrupt-controller
• dma-controller

The Open Firmware Working Group may define additionalgeneric names in future recommended
practice documents or binding documents. For devices that do not fit in any existing generic cat-
egory, the developer may request that the working group establish a new generic name, or may use
an explicit name prefaced with a manufacturer name and a comma.

Guideline 2: The"compatible" property must be present. Its first component should be an
explicit, unique name that identifies the device precisely enough to be able to infer the detailed pro-
gramming model from that name. The format of that explicit name ismanufacturer,model, as
specified by the"name" properties of plug-in devices (see Reference [1], page 162).

4. Effect on OS Driver Selection Code
An operating system that implements the driver searching technique that Reference [1] recom-
mends for the"compatible" property (see Reference [1], page 127) is likely to require no
changes as a result of this recommended practice. If a"name" property has a generic value, the
search for a driver matching that generic name is likely to fail, but the next step of the search (using
the"compatible" property) will succeed, finding the same driver that would have been found
had the explicit name been in the"name" property.

It is possible that the operating system will find a driver matching the generic name, and that said
driver will not be the correct one. However, this is not a new problem, because generic names have
already been used in the past for built-in devices. Consequently, an operating system that does not
already have a mechanism for resolving or avoiding suchfalse matches is likely to have problems
eventually, with or without the proliferation of generic names.

The following suggests some possible techniques for dealing with suchfalse generic matches.

a) In collections of OS drivers, avoid the use of generic names for the drivers themselves.
For example, it is generally unwise to name a driverethernet, since there are many
different ethernet adapters with different programming models. Using the generic name
ethernet to identify only one such driver is presumptuous.

b) Separate the OS's name spaces for drivers forreal hardware devices andpseudo-
drivers (collections of support routines that are used byreal drivers). Some operating

Generic Names 1.4 Open Firmware Recommended Practice

6 Approved Version 12/30/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

systems load such pseudo-drivers using a mechanism similar to the mechanism used for
real drivers. Pseudo drivers often perform generic functions that apply equally well to, for
example, all ethernet adapters, independent of their low-level programming models.
Consequently, it is reasonable to use generic names (e.g.ethernet) for such pseudo-
drivers. Separating the name spaces ofreal drivers and pseudo-drivers avoids false
matches from generic device names to generic psuedo-driver names.

c) Make the OS's driver search mechanism depend upon the device's parent. In other
words, separate the OS's driver name spaces so that drivers for devices that attach to, for
example, PCI bus can be distinguished from those that attach to, for example, ISA bus.
This reduces the range over whichfalse matches can occur.

d) For cases where false matches are unavoidable (for example, if there is an existing
driver with a generic name that must be retained for backwards compatibility) allow the
drivers that can be incorrectly matched the possibility of rejecting the match. One
technique for doing so is to for the driver to inspect the compatible property to ensure
that it is appropriate. Another common technique is to have the generic driverprobe the
hardware to see if it behaves as expected (although this technique can cause problems).

5. Existing Devices
Existing devices with explicit names need not change. The recommended search techniques con-
tinue to work correctly with such devices.

6. Compatibility (Informative)
This section discusses compatibility concerns and implications associated with the strings identi-
fying device compatibility in the Open Firmware“compatible” property.

6.1. Historical Perspective
Historically, one of the problems with devices that identify themselves is that they have a choice:
they can identify themselves accurately, or they can identify a well-known product they claim to
emulate. If they identify themselves accurately, then there is a backwards compatibility problem;
existing software will not recognize new hardware, even if the new hardware is a pure superset of
the old, supported, hardware. If, on the other hand, they identify themselves as an older product
that they emulate, the identification is incorrect or misleads humans and makes it difficult for soft-
ware to take advantage of added features or work aroundimperfections in the implementation of
the emulation.

6.2. Compatibility Intent
Open Firmware’s"compatible" property attempts to address these concerns by allowing both
precise identification of the device and explicit identification of other devices with which this de-
vice is compatible. The intent is that if software does not have explicit support for this particular
device but does have support for one of the devices with which it iscompatible, the software will
be able to function and correctly operate the device. Because the device may have features in ad-
dition to those supported by the compatible device, the software may not take full advantage of the
hardware.

This recommended practice takes this one step further, by noting that the attributes or character-
istics that a particular device is MOST compatible with it is itself, and requiring that the device
itself be the first entry in the“compatible” property.

Open Firmware Recommended Practice Generic Names 1.4

12/30/96 Approved Version 7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

6.3. Hardware Programming Interface
Ideally, the hardware programming interface of a new device that iscompatible with an old device
will be exactly the same as, or a pure superset of, the interface supported by the old device. This
means not only that the device iscapable of operating in a compatible fashion, but that the firm-
ware will set it up to operate compatibly.

In particular:

• All defined registers must have their defined semantics.

• All defined commands (if applicable) must have their definedsemantics.

• Additional registers and/or commands may exist which provideadditionalfunctionality, but
manipulating them must not berequired to operate the device in acompatible fashion.

• Device responses must conform to the defined semantics.

• Additional device responses may be possible, but theymust be disabled so that the software
receives only compatibleresponses.

6.4. Open Firmware Properties
As with the hardware interface, Open Firmware Properties must be the same as, or a pure superset
of, the defined Open Firmware Properties of the emulated device.

In particular:

• All properties defined by the emulated device must have theirdefined semantics.

• Additional properties may exist, but their use must notbe required forcompatible operation.

• All defined entries in" reg " , " interrupts " , and similar propertiesmust have their
defined semantics. Such entries must be at thebeginning of the property, in the order defined
by the emulateddevice.

• Additional entries in" reg " , " interrupts " , andsimilar properties may exist, but their
use must not be required forcompatible operation. Such entries may be added only attheend
of the property, after all entries defined by theemulated device.

• A property defined by the emulated device may not have a valueother than those defined by
the emulated device.

6.5. Open Firmware Methods
Again, the methods supplied must be the same as, or a pure superset of, the defined properties of
the emulated device.

In particular:

• All methods defined by the emulated device must have theirdefined semantics.

Generic Names 1.4 Open Firmware Recommended Practice

8 Approved Version 12/30/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

• Additional methods may exist, but their use must not berequired forcompatible operation.

• All defined arguments to methods, in particularopen arguments,must have the semantics
defined by the emulated device.

• Additional arguments values for methods may exist, buttheir use must not be required for
compatible operation.

• Methods return values defined by the emulated devicemust have values as defined by the
emulated device.

6.6. What doescompatible NOT imply?
Compatibility does not imply the following:

• Anything explicitly specified asundefined by the emulated device may differ, and
should be expected to differ, in the emulating device.

• Anything not defined by the emulated device may differ in the emulating device.

• Any registers, portions of registers, commands, methods, properties, and behaviors
marked in the emulated device asreserved, undefined, obsolete, do not use, et cet-
era, may have different semantics in the emulating device.

• Contents of" reg " , " interrupts " , or similar properties after the last entry
defined by the emulated device are undefined and may be used in emulating
devices.

• Absolute register addresses, interrupt routing, et cetera, may differ between the two
devices. Software must use the properties supplied to determine these values and
must not make assumptions based on the device identification.

• Two devices may have different electrical interfaces.

• Two devices may have different physical appearance and packaging .

• Two devices may have different labeling, jumpers, switches, installation procedures,
etc.

6.7. Real World Perspective
Two devices are seldom perfectly compatible. New functionality often requires a tradeoff with
the older and seldomly used functionality. Subtle undocumented behaviors are often different.
While the comments above imply absolute compatibility, in reality, placing a device into a com-
patible list is subjective and results in a judgement call by a vendor. If the newer device is com-
patible with all but a few never-used interfaces of the old, it may be appropriate to call it
compatible even though it is not strictly a superset. The vendor must decide whether the custom-
er’s best interests lie with the ability to, most likely, use the new hardware with existing software,
or with an absolute guarantee of compatibility. No simple set of rules can say how to make this
decision; it will depend on the exact device and its market. This gray area is why it is absolutely
essential that all devices identify themselves precisely as possible so that, in the event that there is
an unexpected incompatibility, the software can take appropriate device-specific corrective action.
Even when a new device is designed to be a perfect emulation of an old, it is best to identify the
new device distinctively and list the older device after it in"compatible" .

Open Firmware Recommended Practice Generic Names 1.4

12/30/96 Approved Version 9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Generic Names 1.4 Open Firmware Recommended Practice

10 Approved Version 12/30/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

-- END OF DOCUMENT --

